Secondary Myeloid Malignancies after Autologous Stem Cell Transplantation for Multiple Myeloma Are Associated with a Distinct Mutational Profile

Medical College of Wisconsin | Milwaukee, WI

Background

- Given improvement in Multiple Myeloma survival, patients are living longer with a 5 year relative survival of 53.9%
- Patients with Multiple Myeloma are at risk (~5-11.6%) for developing secondary primary malignancies, including secondary myeloid malignancies (SMM)
- Etiology and timing of SMM associated genetic alterations is unclear

Objective

For a sample of Multiple Myeloma patients who develop SMM:
- Compare genetic alterations at initial diagnosis, Autologous Stem Cell Transplant (ASCT) and at diagnosis of SMM
- Assess for presence of previously reported deleterious myeloid genetic alterations

Methods

- Retrospectively identified 8 patients with Multiple Myeloma who developed SMM post-ASCT
- Charts abstracted for clinical data
- Whole exome sequencing performed on all three samples (Multiple Myeloma diagnosis bone marrow, ASCT CD34+ autograft cells (auto), and SMM bone marrow biopsy)
- From literature review identified 89 reported GAs in myeloid malignancies
- Performed targeted deep sequencing for these mutations and obtained variant allele frequencies
- GAs with known clinical significance, variant allele frequency (VAF) ≥0.05 or ≤0.9, and high or moderate impact on the gene-encoded protein were used for analysis

Significant Genetic Alterations

- 118,614 total gene alterations identified
- 2,074 Gene Alterations included for analysis
- Average mutational burden similar between the auto and SMM samples
- TP53 represented the most frequent mutation with the highest amount of variants. Seen in 6 patients in both auto and SMM samples. Harbored 6 high impact and 3 moderate impact variants with alterations of structural interaction variants, missense variants, and frameshift variants.
- Other frequent mutations were KMT2A in 3 pts, KMT2D in 3 pts, PRPF8 in 2 pts, and TET2 in 2 pts

Conclusions

- These results suggest that the mutational profile for SMM after ASCT in MM is distinct from de-novo myeloid malignancies
- The average mutational burden did not change from pre-ASCT to the development of SMM
- Targeted sequencing suggests that SMM was not caused by clonal evolution from auto sample
- Frequent mutations in this population include TP53, KMT2A, KMT2D, PRPF8, and GATA2
- Studies with a larger patient population are needed to confirm genetic alteration trends in this SMM population

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age at MM Dx</th>
<th>Pre-ASCT Lenalidomide</th>
<th>SMM</th>
<th>Post-ASCT Lenalidomide</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>66</td>
<td>N/A</td>
<td>AML</td>
<td>Yes</td>
</tr>
<tr>
<td>P2</td>
<td>64</td>
<td>Yes</td>
<td>MDS</td>
<td>Yes</td>
</tr>
<tr>
<td>P3</td>
<td>56</td>
<td>Yes</td>
<td>AML</td>
<td>N/A</td>
</tr>
<tr>
<td>P4</td>
<td>61</td>
<td>No</td>
<td>MDS</td>
<td>Yes</td>
</tr>
<tr>
<td>P5</td>
<td>62</td>
<td>No</td>
<td>AML</td>
<td>Yes</td>
</tr>
<tr>
<td>P6</td>
<td>69</td>
<td>Yes</td>
<td>AML</td>
<td>No</td>
</tr>
<tr>
<td>P7</td>
<td>71</td>
<td>No</td>
<td>MDS</td>
<td>Yes</td>
</tr>
<tr>
<td>P9</td>
<td>61</td>
<td>Yes</td>
<td>MDS</td>
<td>Yes</td>
</tr>
</tbody>
</table>