Adoptive Cell Therapies in Solid Tumors Stacey L. Doran, MD **Assistant Research Physician** Center for Immuno-Oncology (CIO) Center for Cancer Research, NIH

Disclosures

- No personal disclosures
- CME Consideration: There are (currently) no FDA-approved cellular will be clearly referenced as such.

therapies for solid tumors. Presented early-phase and ongoing clinical trials

Introduction: A Promising Paradigm

- \bullet infections.
- (BCMA) in multiple myeloma.
- \bullet solid tumor.

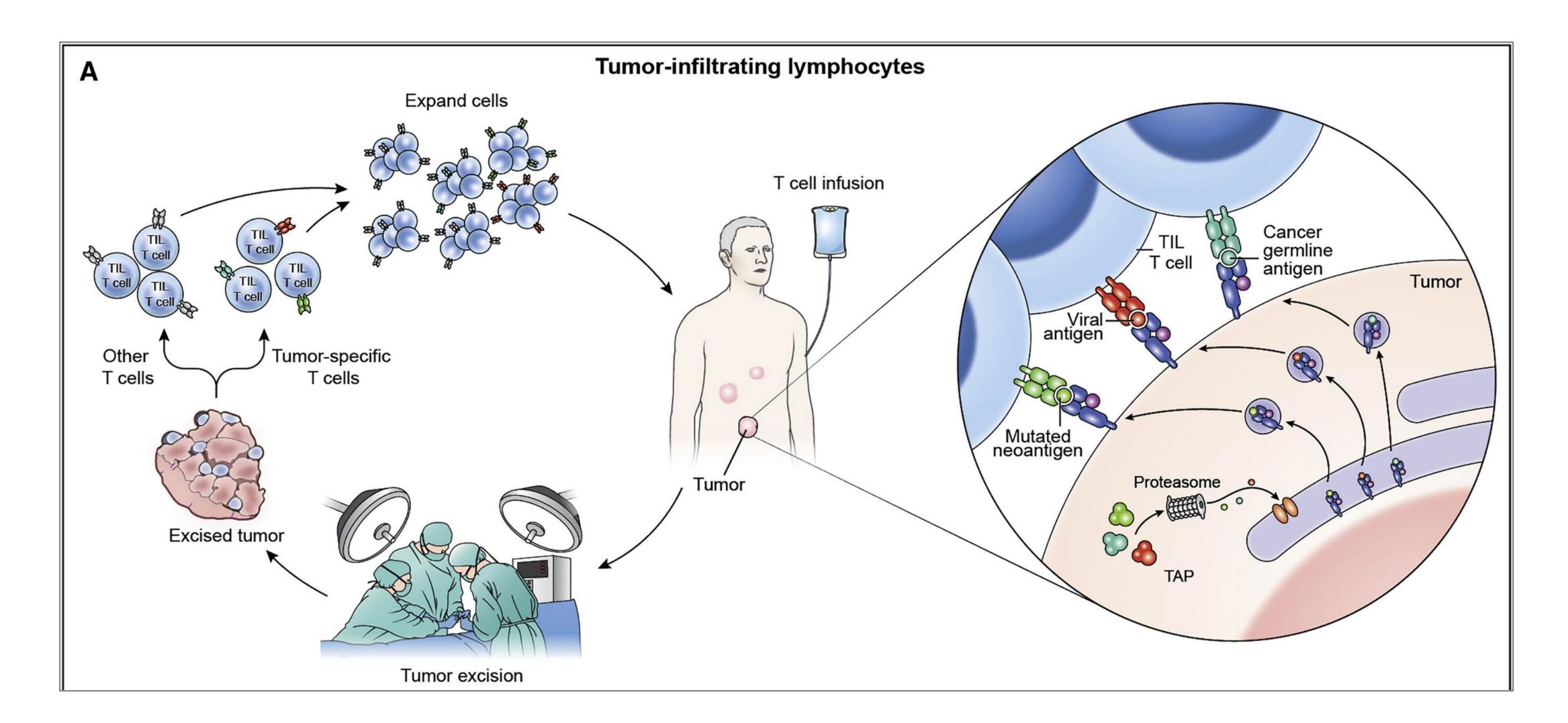
Decades of experience using transfer of immune cells to treat cancer and

• The field of oncology was revolutionized by the emergence of Chimeric Antigen Receptor (CAR)-T cell therapies for hematologic malignancies. • Since 2017, the U.S. Food and Drug Administration (FDA) has approved four chimeric antigen receptor (CAR)-T products targeting CD19 in B cell malignancies and two CAR-T products targeting B cell maturation antigen

In comparison, there are <u>no FDA approvals</u> for a cellular therapy in any

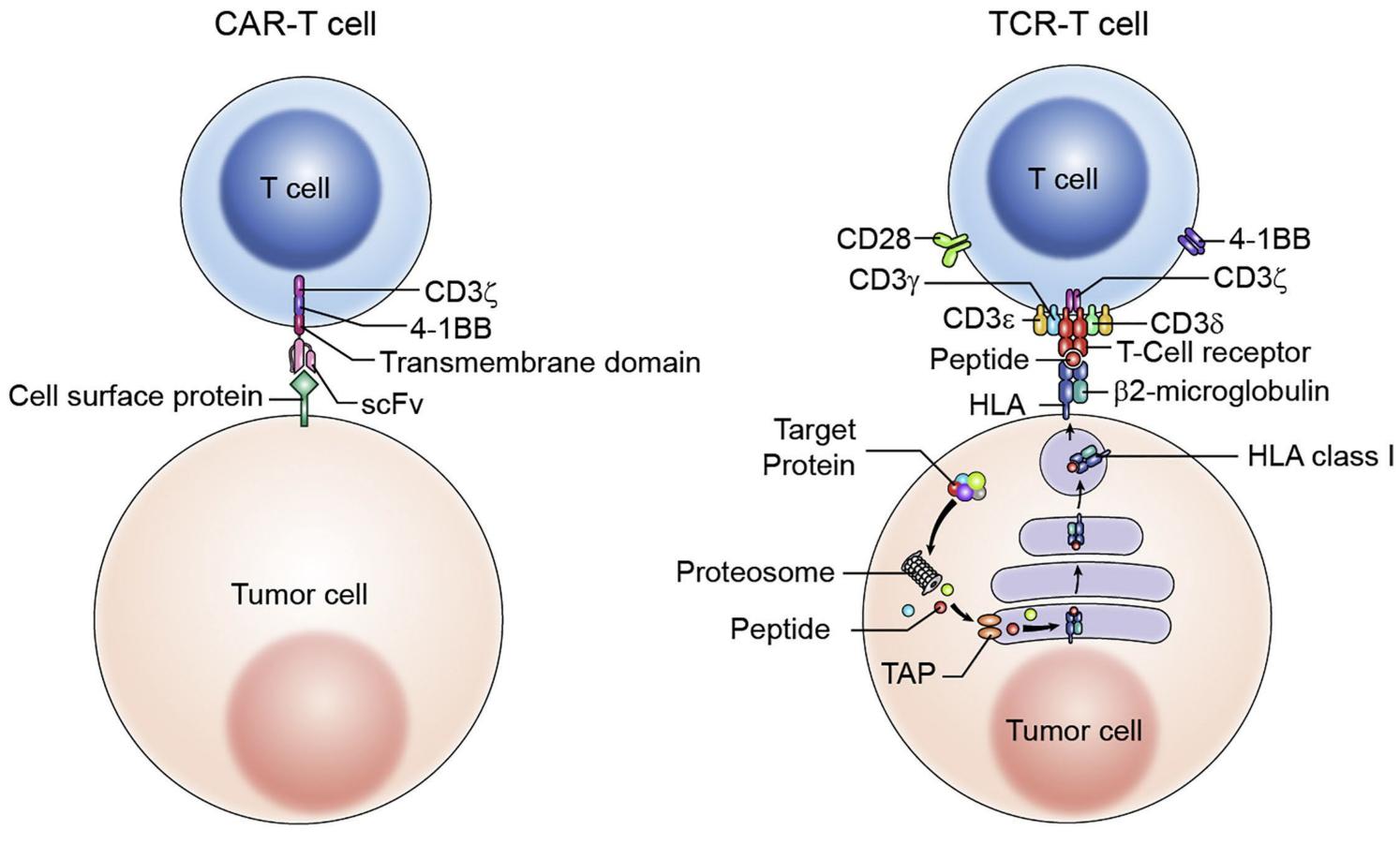
Objectives

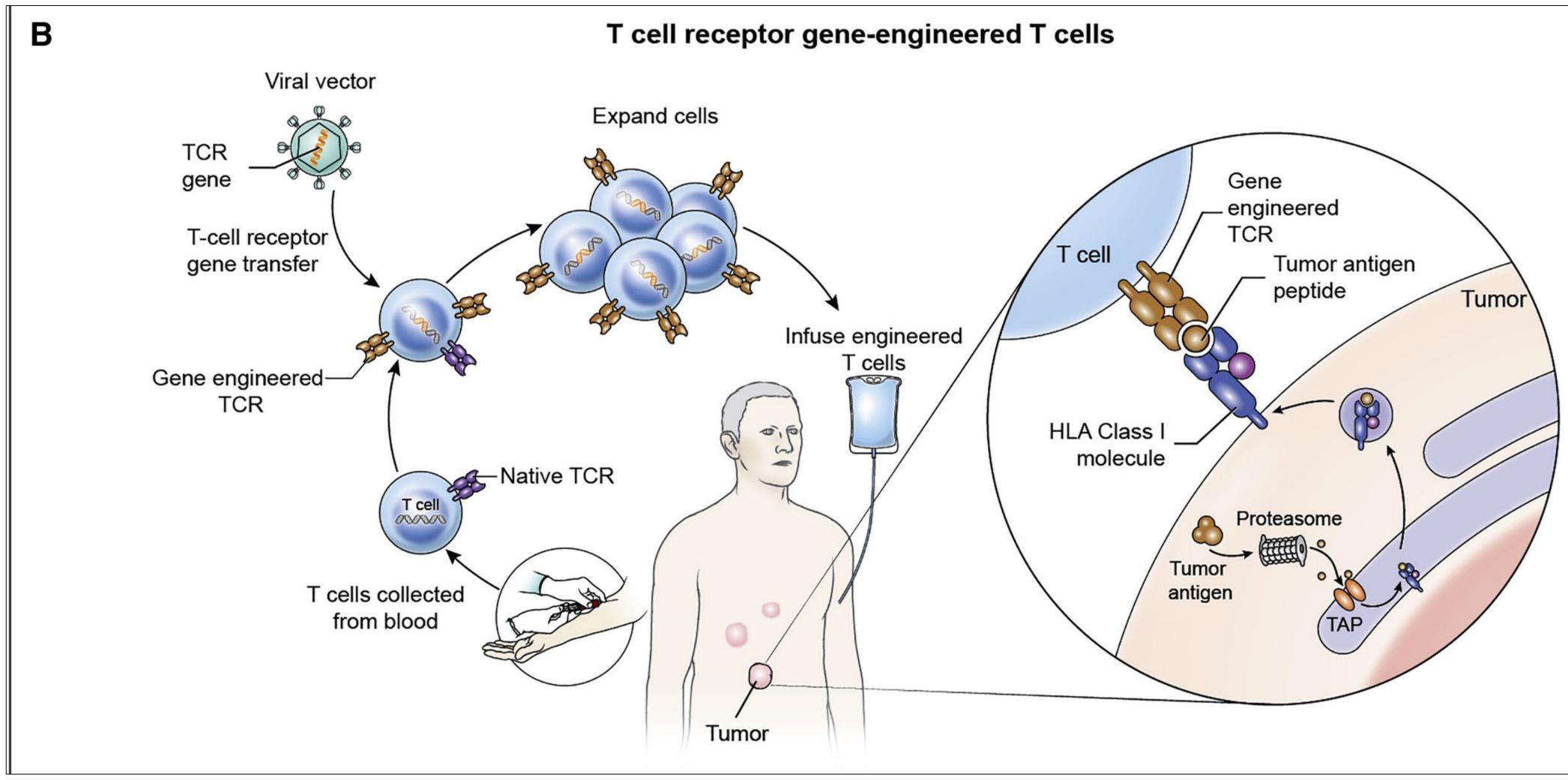
- This talk will give a broad overview of the current field of research using <u>adoptive T-cell therapies in solid tumors</u>, with a focus on basic principles and trials that have reported clinical outcomes.
- At the end of this session, attendees will be able to: 1. Describe the main three categories of Adoptive T-cell Therapy
 - 2. Classify different types of targeted antigens
 - 3. Recognize the inherent pros and cons of chosen targets and approaches


Adoptive Cellular Therapy (ACT) for Cancer

- Administration of tumor-targeting cells for the treatment of cancer
- Three main categories of T lymphocyte therapies:
 - Tumor Infiltrating Lymphocytes (TIL)
 - Chimeric Antigen Receptor (CAR)-T cells
 - T cell Receptor (TCR)-T cells

Most commonly mature T lymphocytes, though other cells (e.g. Natural Killer (NK), specifically selected subsets, etc.) are also being investigated.





Differences in antigen recognition and intracellular signaling between CAR-T and TIL/TCR-T cells

Shared Features of Different ACTs

- All approaches (TIL, CAR, TCR) typically require an extended inpatient stay and nonmyeloablative lymphodepleting chemotherapy (e.g. cyclophosphamide/fludarabine)
- Majority are administered intravenously
- TIL and TCR therapy frequently use intravenous interleukin-2
- All share hematologic toxicities and infection risks from chemotherapy. Ratews of cytokine release syndrome, neurotoxicity, off-target toxicity, etc. depend on the product.

Comparing different types of T cell therapy

Chime	ric antigen receptor	T cell receptor	
Ad	vantages	Advantages	
	 Treatment not limited by HLA type Antigen presentation machinery 	 Targetir antigen 	
	 not required Shorter manufacturing time than TILs Does not require surgery 	 Shorter than TIL Does not 	
Dis	 Targeting limited to the extracellular domain of a membrane-anchored protein (some exceptions) Defined target antigen required Evasion by loss of target antigen surface expression Targets a single antigen (some exceptions) 	 Disadvantage Treatme Evasion present Defined Targets 	

Tumor-infiltrating lymphocyte

Advantages

- Potential for targeting of multiple antigens
- Antigen targeting does not need to be defined
- Targeting not restricted by antigen localization

Disadvantages

- Antigen targeting is highly variable between cell products
- Requires surgery
- Longer manufacturing time than engineered cells

Norberg et al. Cancer Cell 2023 Slide provided by author S. Norberg

ting not restricted by

- n localization
- r manufacturing time
- ILs
- not require surgery

es

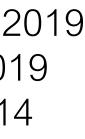
- nent limited by HLA type
- n by loss of antigen
- ntation machinery
- d target antigen required
- s a single antigen

TIL Therapy in Solid Tumors- Melanoma

- Foundation of ACT is TIL therapy in metastatic melanoma (1988)¹
- Randomized, phase 2 study had ORR of 54% (54/101) with 24% CR²
- median OS was higher in TIL compared to ipilimumab (25.8 vs 18.9) months) and 20% of patients experienced complete response³
- A biologics license application (BLA) was filed in May 2023 for the TIL expected February 24, 2024⁴

• Multicenter, phase 3 study of TIL vs ipilimumab in 168 patients showed product Lifileucel for treatment of advanced melanoma. FDA update

> ¹Rosenberg et al. NEJM 1988 ²Goff et al. JCO 2016 ³Rohaan et al. NEJM 2022 ⁴Mullard Nat Rev Drug Disc 2024



TIL Therapy in Solid Tumors- GYN and GI Cancers

- Single, phase 2 study of TIL for metastatic HPV-associated cancer demonstrated ORR 24% (7/29) including 2 prolonged CRs in patients with metastatic cervical cancer (>10 years)¹
- Industry-sponsored, phase 2 study of TIL (LN-145) in patients with metastatic cervical cancer, ORR was 44% (12/27)²
- LN-145 was granted Breakthrough Therapy designation by the US FDA for advanced cervical cancer
- Case reports of impressive PRs to TIL in cholangiocarcinoma and colon cancer^{3,4}

¹Stevanovic et al. CCR 2019 ²Jazaeri et al. ASCO 2019 ³Tran et al. Science 2014 ⁴Tran et al. NEJM 2016

TIL Therapy in Solid Tumors- Combination Therapy

- A single-arm, phase 1 study of TIL + nivolumab in patients with **PD-1** refractory, advanced NSCLC demonstrated responses in 3 of 13 patients including 2 CRs (duration >1.5 years)¹
- A case series of TIL + pembrolizumab in patients with metastatic breast cancer demonstrated responses in 3 of 6 patients including 1 CR (duration >5.5 years)²
- Pre-clinical and current clinical data suggest a potential additive effect for a combination approach but await more data³

¹Creelan et al. Nat Med 2021 ²Zacharakis et al. JCO 2022 ³Davies et al. JITC 2022

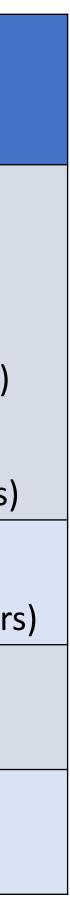
- There are no current approvals, but <u>if</u> the pending BLA is approved, Lifileucel in metastatic melanoma would become the first FDA-approved adoptive cellular therapy for a solid cancer.
- Small studies in a variety of malignancies support continued development of TIL, but in the near term expect this option to only remain available on a clinical trial
- Research to improve TIL, such as by using novel combination therapies or strategies to select TIL with superior activity, is ongoing and exciting

Summary of TIL Therapy

CAR-T and TCR-T Therapies

- target antigen in advance
- window will be limited.

• Unlike in TIL, use of CAR-T and TCR-T requires defining an appropriate


 In general, <u>CAR-T target surface antigens</u> on the outside of the cell and <u>TCR-T target intracellular antigens</u> that are expressed on MHC molecules. Ideally, a target would be absent from vital healthy tissues, or else "ontarget, off-tumor toxicity" will be encountered and the therapeutic

Targetable Classes of Antigens

Class	Present in Tumors	Present in Healthy Tissue	Example(s)
Shared tumor/self	***	+	CD19 (lymphoma, lymphocytes) MART1 (melanoma/healthy melanocytes) CEA (colon cancer/healthy colonocytes)
Neoantigens (patient tumor specific)	+/-	-	Mutant KRAS (pancreas, colon, lung, many cancers
Cancer Germline Antigens	+/-	Germ Cells	NY-ESO-1 (synovial cell sarcoma)
Viral Antigens (in Virus-Associated Cancers)	♣		HPV antigens (cervical cancer, HNSCC)

CAR-T Therapy in Solid Tumors

- Unlike the explosive growth of CAR-T cell therapy in hematologic malignancies, extension to solid tumors has been slower
- Cell surface targets largely limited to the shared tumor/self category of antigens, which has a shown a narrow therapeutic window (tumor expression > healthy cell expression)
- Early CAR-T cell trials had <u>significant toxicity</u>, including a death due to a CAR-T based on Trastuzumab that targeted ERBB2(HER2) and dose-limiting liver toxicity in CAR-T targeting carbonic anhydrase 9^{1,2}

¹Morgan et al. Mol. Ther. 2010 ²Lamers et al. Mol. Ther. 2013

CAR-T Therapy: More Recent Outcomes

- In a phase 2 study of CAR-T cells targeting claudin 18.2 (CLDN18.2) in patients with gastric/GEJ malignancies, GI-related toxicity was dose limiting (GI hemorrhage), but a favorable ORR of 49% (18/37) was seen¹ Larger confirmatory studies are pending.
- In a phase 1/2 study of CAR-T cells targeting mesothelin in expressing cancers (mesothelioma, ovarian carcinoma, cholangiocarcinoma), the ORR was 20% (6/30) though pulmonary toxicity (including a death) was dose limiting². A larger phase 2 study is underway.

¹Qi et al. Nat. Med. 2022 ²Hassan et al. Nat Med 2023

TCR-T Therapy in Solid Tumors

- Advantage of ability to target intracellular antigens (far more targets)
- melanoma, synovial cell sarcoma, ovarian, esophageal, urothelial, osteosarcoma, colorectal, pancreas and HPV-associated cancers¹
- toxicity, including GI toxicity with CEA TCR-T cells in **colon cancer**²
- A*02:01) is present in <50% of the overall US population

Reports of TCR-T cell activity in a broad range of solid tumors, including • As with CAR-T, early trials targeting shared self/tumor antigens showed • Major disadvantage is HLA restriction. The most common haplotype (HLA-

> ¹Parkhurst Mol Therapeutics 2011 ²Norberg et al. Cancer Cell 2023

TCR-T Therapy in Solid Tumors: Outcomes

- Pilot trial testing NY-ESO-1 TCR-T cells in advanced NY-ESO-1+ tumors (synovial cell sarcoma, melanoma) demonstrated an ORR of 58% $(22/38)^1$. • Multi-center, phase 1 study of TCR-T cell therapy targeting MAGEA4 in patients with relevant tumors (synovial cell sarcoma, ovarian, head and **neck**) demonstrated an ORR of $24\% (9/38)^2$.
- demonstrated PRs in 6 of 12 patients³. A multicenter phase II is ongoing. showed ORR in 1/8 patients, with PR lasting >2 years⁴
- Phase 1 study of TCR-T cell therapy targeting HPV16 E7 in HPV+ cancer • Phase 1 of hepatitis B virus (HBV) TCR-T cells in hepatocellular carcinoma

¹Robbins et al. CCR. 2015 ²Hong et al. Nat Med. 2023 ³Nagarsheth et al. Nat Med. 2021 ⁴Meng et al. Hepatol Int. 2021

Target antigens for engineered T cell therapy in solid cancers

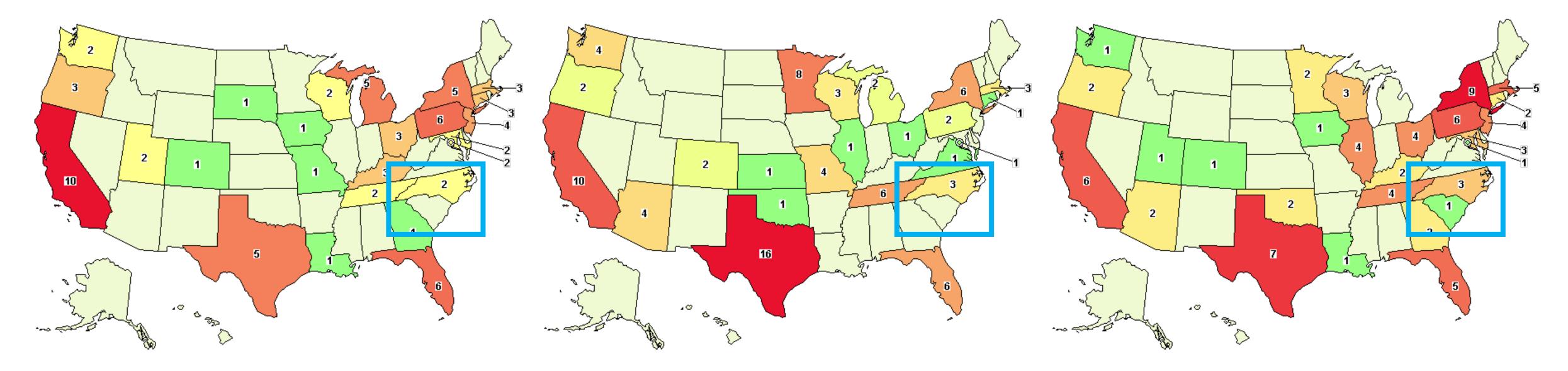
Clinical trial outcomes^a

Class	Examples	Normal tissue expression	Antigen-targeting receptor Cancer type		Tumor responses (responses/N)	On-target toxicity
Shared tumor/self	MART1, gp100, CEA, CA9, ERBB2, ROR1, GD2, GPC3,	variable	MART1 TCR ⁵¹	Melanoma	6/20	skin, eye, and ear
			gp100 TCR ⁵¹	melanoma	3/16	skin, eye, and ear
			CEA TCR ⁵²	colorectal carcinoma	1/3	colon
	CLDN18.2		CA9 CAR ⁵³	renal cell carcinoma	0/12	liver
			ERBB2 CAR ⁵⁴	colorectal carcinoma	0/1	heart and lung
			CLDN18.2 CAR ¹⁰	gastrointestinal cancers	18/37	GI mucosa
Cancer germline	NY-ESO-1, select MAGE antigens, KK-LC-1	germ cells	NY-ESO-1 TCR ⁴⁹	synovial cell sarcoma, melanoma	22/38	none
			NY-ESO-1 TCR ⁵⁶	synovial cell sarcoma	6/12	none
			NY-ESO-1 TCR ⁵⁷	synovial cell sarcoma	9/30	none
			MAGE-A3 TCR ⁴²	solid tumors	4/17	none
			MAGE-A3/A9/A12 ⁶³	solid tumors	5/9	brain ^b
Neoantigen (mutation, frameshift, splice variant, etc.)	mutant RAS, mutant BRAF, EGFRvIII	none	N/A ^c	N/A ^c	N/A ^c	N/A ^c
Viral	HPV, HBV, EBV	none	E6 TCR ⁹	HPV-associated cancers	2/12	none
			E7 TCR ⁸	HPV-associated cancers	6/12	none

Summary of CAR-T and TCR-T Therapies

- T and TCR-T approaches
- in the near term
- Ongoing clinical trials are investigating expanded target antigens, to mediate toxicity

• Limited reports of activity in a broad range of solid tumors using both CAR-


 FDA has granted Breakthrough Therapy Designation to NY-ESO-1-TCR T cells for synovial sarcoma and Fast-Track Designation to HBV TCR-T cells for hepatocellular carcinoma, however no full FDA approvals are expected

personalized TCRs, mechanisms to overcome tumor resistance, and ways

Recruiting Studies for Cellular Therapies in Solid Neoplasms per Clinicaltrials.gov

TIL

USA: 24 Worldwide: 82

USA: 17 Worldwide: 49 CAR

TCR

USA: 16 Worldwide: 31

Clinicaltrials.gov Search as of February 6th, 2024

NIH Center for Immuno-Oncology Ongoing ACT Trials

- Actively Recruiting: Phase I KK-LC-1 TCR-T cell therapy for Gastric, Breast, Cervical, Lung and other KK-LC-1 positive cancers (NCT05035407)
- Actively Recruiting: Phase II trial of E7 TCR-T cell therapy for HPV-Associated Cancers (NCT02858310)
- Upcoming in 2024: Phase I/II expanding E7 TCR-T cells to patients with HIV and HPV-Associated Anal, Cervical, and Head and Neck Cancers
- <u>The NIH Clinical Center in Bethesda, MD covers all treatment costs and</u> <u>travel reimbursements for patients/caregivers</u>
- Remote/tele prescreening and mail blood tests for optimal convenience
- Happy to answer questions, direct contact at <u>stacey.doran@nih.gov</u>

Key Takeaways/Review of Objectives

- Three main categories of Adoptive Cell Therapy are TIL, CAR-T, and TCR-T, and all three are being actively used in clinical trials.
- Antigen targets include shared tumor/self antigens, cancer germline antigens, mutated neoantigens, and viral antigens.
- In more than ten years of effort, both activity and toxicity have been encountered, with most persistent toxic outcomes largely due to the presence of targeted antigen on vital healthy tissues.
- Field is pushing forward with more rational development of treatments and continued improvement in safety and clinical activity

Citations/References List

- Norberg SM, Hinrichs CS. Engineered T cell therapy for viral and non-viral epithelial cancers. Cancer Cell. 2023 Jan 9;41(1):58-69 •
- 1988 Dec 22;319(25):1676-80
- ٠ Melanoma. J Clin Oncol. 2016 Jul 10;34(20):2389-97
- Rohaan MW, Borch TH, van den Berg JH, et al. Tumor-Infiltrating Lymphocyte Therapy or Ipilimumab in Advanced Melanoma. N Engl J Med. 2022 Dec 8;387(23):2113-2125 •
- Mullard A. Tumour-infiltrating lymphocyte cancer therapy nears FDA finish line. Nat Rev Drug Discov. 2024 Jan;23(1):3-7. ۲
- ۲ 1493
- carcinoma. JCO 37, 2538-2538(2019).
- ٠
- Tran E, Robbins PF, Lu YC, et al. T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer. N Engl J Med. 2016 Dec 8;375(23):2255-2262.
- Creelan BC, Wang C, Teer JK, et al. Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial. Nat Med. 2021 Aug;27(8):1410-1418.
- 1;40(16):1741-1754.
- Davies JS, Karimipour F, Zhang L, et al. Non-synergy of PD-1 blockade with T-cell therapy in solid tumors. J Immunother Cancer. 2022 Jul;10(7):e004906.
- recognizing ERBB2. Mol Ther. 2010 Apr;18(4):843-51.
- engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013 Apr;21(4):904-12.
- ٠
- 6. doi: 10.1038/mt.2010.272.
- 2015 Mar 1;21(5):1019-27. doi: 10.1158/1078-0432.CCR-14-2708.
- Hong DS, Van Tine BA, Biswas S, et al. Autologous T cell therapy for MAGE-A4+ solid cancers in HLA-A*02+ patients: a phase 1 trial. Nat Med. 2023 Jan;29(1):104-114. •
- Nagarsheth NB, Norberg SM, Sinkoe AL, et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nat Med. 2021 Mar; 27(3): 419-425.
- ٠ 2021 Dec;15(6):1402-1412.

Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med.

Goff SL, Dudley ME, Citrin DE, et al. Randomized, Prospective Evaluation Comparing Intensity of Lymphodepletion Before Adoptive Transfer of Tumor-Infiltrating Lymphocytes for Patients With Metastatic

Stevanović S, Helman SR, Wunderlich JR, et al. A Phase II Study of Tumor-infiltrating Lymphocyte Therapy for Human Papillomavirus-associated Epithelial Cancers. Clin Cancer Res. 2019 Mar 1;25(5):1486-

Jazaeri A, Zsiros E, Amaria R, et al., Safety and efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical

Tran E, Turcotte S, Gros A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014 May 9;344(6184):641-5. doi: 10.1126/science.1251102

Zacharakis N, Huq LM, Seitter SJ, et al. Breast Cancers Are Immunogenic: Immunologic Analyses and a Phase II Pilot Clinical Trial Using Mutation-Reactive Autologous Lymphocytes. J Clin Oncol. 2022 Jun

Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor

Lamers CH, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C, Vulto A, den Bakker M, Oosterwijk E, Debets R, Gratama JW. Treatment of metastatic renal cell carcinoma with CAIX CAR-

Qi C, Gong J, Li J, Liu D, et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med. 2022 Jun;28(6):1189-1198. doi: 10.1038/s41591-022-01800-8. Hassan R, Butler M, O'Cearbhaill RE, et al. Mesothelin-targeting T cell receptor fusion construct cell therapy in refractory solid tumors: phase 1/2 trial interim results. Nat Med. 2023 Aug;29(8):2099-2109. arkhurst MR, Yang JC, Langan RC, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011 Mar;19(3):620-

Robbins PF, Kassim SH, Tran TL, et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res.

Meng F, Zhao J, Tan AT, et al. Immunotherapy of HBV-related advanced hepatocellular carcinoma with short-term HBV-specific TCR expressed T cells: results of dose escalation, phase I trial. Hepatol Int.

