Hormone receptor-positive breast cancer

Ruth O'Regan, MD

Chair and Charles A. Dewey Professor,

Department of Medicine

Associate Director for Education and Mentoring,

Wilmot Cancer Institute

University of Rochester

Disclosures

I have served as an advisor for PUMA, Lilly, Pfizer, Seagen, Novartis, Astra-Zeneca and have served on DSMB for Gilead

All slides included in this presentation are publicly available at SABCS.org

Topics to cover

Early stage disease

- Disease outcomes based on race
- Abemaciclib and everolimus as adjuvant therapies

Metastatic disease

- CDK 4/6 inhibition in visceral disease/crisis
- CDK 4/6 inhibition through progression
- Oral SERDS

Race and Clinical Outcomes in the RxPONDER Trial: A Clinical Trial <u>Rx</u> for <u>Positive Node</u>, <u>Endocrine</u> <u>Responsive Breast Cancer (SWOG S1007)</u>

Yara Abdou, William E Barlow, Julie R Gralow, Funda Meric-Bernstam, Kathy S Albain, Daniel F Hayes, Nancy U Lin, Edith A Perez, Lori J Goldstein, Stephen K Chia, Sukhbinder Dhesy-Thind, Priya Rastogi, Emilio Alba, Suzette Delaloge, Anne F. Schott, Steven Shak, Priyanka Sharma, Danika L. Lew, Jieling Miao, Joseph M. Unger, Debasish Tripathy, Lajos Pusztai, Gabriel N. Hortobagyi, Kevin Kalinsky

Background

- Racial disparities in breast cancer outcomes continue to be a major health care challenge.
- US Black women have 4% lower incidence of breast cancer, yet 40% higher breast cancer mortality than White women.
- Other studies have found that disparities persist even after adjustment for non-biological factors.
- We report an analysis of clinicopathologic characteristics, survival outcomes and race in association with Recurrence Score (RS) in participants (pts) in the RxPONDER trial.

Breast cancer statistics, ACS 2022; Albain, et al. JNCI 2021

Background

• RxPONDER: Clinical utility of the 21-gene RS in pts with HR+, HER2- breast cancer and 1-3 positive lymph nodes (1-3 LN+)

Kalinsky, et al. NEJM 2021

Background

- RxPONDER: Chemotherapy benefit differed by menopausal status:
 - Postmenopausal: no chemotherapy benefit for pts with RS \leq 25 ٠
 - Premenopausal: chemotherapy benefit observed •

Premenopausal

Kalinsky, et al. NEJM 2021

Objectives

- Evaluate the entire cohort by race for:
 - Clinicopathologic characteristics
 - Recurrence Score distribution
- Analyze clinical outcomes by race using two endpoints: Invasive Disease-Free Survival (IDFS), Distant Relapse-Free Survival (DRFS)
- Determine if race is independently prognostic
- Determine whether race is predictive of treatment benefit

Results

A total of **4,048** women with HR+/HER2-BC, 1-3 LN+, RS \leq 25 and known race/ethnicity were included:

- 2,833 Non-Hispanic (NH) White pts
 (70%)
- 248 NH Black pts (6.1%)
- 610 Hispanic pts (15.1%)
- 324 Asian pts (8.0%)
- 33 NAPI pts (0.8%)

Clinicopathologic characteristics by Race and Ethnicity

	NH White	NH Black	Asian	NAPI	Hispanic
	(n=2,833)	(n=248)	(n=324)	(n=33)	(n=610)
MEDIAN AGE	58 (28 –	58 (18 –	50 (28 –	58 (42 –	55 (28 –
(RANGE)	87)	86)	76)	74)	79)
MENOPAUSAL STATUS					
Pre-menopausal	30%	23%	58%	27%	38%
Post-menopausal	71%	77%	42%	73%	62%
	/ 1 -/0	// //	42 70	7370	0270
POSITIVE NODES 1 node	66%	67%	73%	70%	65%
2 nodes	25%	22%	21%	24%	27%
3 nodes	9%	11%	6%	6%	9%
TUMOR SIZE					
T1	60%	55%	52%	64%	61%
T2	36%	41%	45%	36%	35%
T3	4%	3%	4%	0%	4%

Abdou et al SABCS 2022.

Clinicopathologic characteristics by Race and Ethnicity

	NH White (n=2,833)	NH Black (n=248)	Asian (n=324)	NAPI (n=33)	Hispanic (n=610)
RECURRENCE					
SCORE					
0-13	42%	42%	42%	39%	43%
14-25	58%	58%	58%	61%	57%
HISTOLOGIC					
GRADE					
Low	27%	22%	14%	15%	27%
Intermediate	62%	60%	79%	64%	58%
High	10%	18%	7%	21%	14%
BODY MASS					
INDEX					
< 20	4%	2%	13%	4%	3%
20-24	27%	6%	47%	23%	24%
25-29	31%	29%	32%	35%	35%
30-34	21%	27%	6%	12%	22%
35+	18%	35%	2%	27%	16%

Treatment type by Non-Hispanic White or Black Race

Primary Treatment Type among Women Randomized to Chemotherapy

	Anthracycline +/- Taxane	Taxane/ cyclophospham ide
Premenopausal NH White	187 (53%)	168 (47%)
Premenopausal NH Black	9 (33%)	18 (67%)
Postmenopausal NH White	261 (33%)	537 (67%)
Postmenopausal NH Black	26 (32%)	55 (68%)

Endocrine therapy selection was similar for NH White and Black Race (data not shown)

IDFS by Race and Ethnicity

IDFS by Race/Ethnicity and menopausal status

Abdou et al SABCS 2022.

IDFS Multivariable Cox Regression for Race/Ethnicity

RACE	Adjusted Hazard Ratio (HR); 95% CI
NH Blacks vs NH Whites	HR=1.37; 95% CI 1.00-1.90; p=0.05
Asian vs NH Whites	HR=0.67; 95% CI 0.45-1.00; p=0.05
Hispanic vs NH Whites	HR=0.92; 95% CI 0.71-1.19; p=0.55

HR adjusted for RS, treatment arm, menopausal status, age, and grade

Abdou et al SABCS 2022.

DRFS by NH White and Black Race

DRFS Multivariable Cox Regression

RACE	Adjusted Hazard Ratio (HR); 95% CI
NH Blacks vs NH Whites	HR=1.71; 95% CI 1.19-2.45; p=0.004

HR adjusted for RS, treatment arm, menopausal status, age, and grade

	Adjusted Hazard Ratio (HR); 95% CI
NH Blacks vs NH Whites	HR=1.31; 95% CI 0.81-2.10; p=0.27

HR adjusted for RS, treatment arm, menopausal status, age, grade and BMI

Accepted Treatment Assignment

NH Blacks NH Whites

Abdou et al SABCS 2022.

Endocrine Therapy Adherence

Remain on Endocrine therapy at 6 and 12 months

Abdou et al SABCS 2022.

RxPONDER Conclusions

- NH Black women with HR+/HER2- BC, 1-3 LN+ and RS ≤ 25 have worse outcomes compared to NH White women independent of RS, treatment arm, age and grade. Although, adjusting for BMI appears to decrease this effect.
- At this time <u>definitive conclusions about racial differences in treatment benefit</u> <u>cannot be made</u> due to the limited number of events in the NH Black cohort.
- NH Blacks were more likely to accept treatment assignment compared to NH Whites and were just as likely to remain on ET at 6 and 12-months. These data suggest that the <u>outcome differences are less likely attributable to lack of</u> <u>treatment compliance within the first year</u>. Longer follow up and further analysis is needed to confirm this finding.

This presentation is the intellectual property of the author/presenter. Contact her at yara_abdou@med.unc.edu for permission to reprint or distribute.

Abdou et al SABCS 2022.

Results from a phase III randomized, placebocontrolled clinical trial evaluating adjuvant endocrine therapy +/- 1 year of everolimus in patients with high-risk hormone receptor-positive, HER2-negative breast cancer: SWOG S1207

Mariana Chavez-MacGregor, Jieling Miao, Lajos Pusztai, Matthew P. Goetz, Priya Rastogi, Patricia A. Ganz, Eleftherios P. Mamounas, Soonmyung Paik, Hanna Bandos, Wajeeha Razaq, Anne O'Dea, Virginia Kaklamani, Andrea L.M. Silber, Lisa E. Flaum, Eleni Andreopoulou, Joseph Baar, Albert G. Wendt, Jennifer F. Carney, Priyanka Sharma, Julie R. Gralow, Danika L. Lew, William E. Barlow, Gabriel N. Hortobagyi.

Rationale

Dysregulation in the PI3kinase/AKT/mTOR signaling pathway is associated with endocrine therapy (ET) resistance.

Everolimus, an mTOR-inhibitor, in combination with ET prolonged PFS compared to ET alone among patients with metastatic hormone receptor (HR)-positive, HER2negative breast cancer (BC)

• The previously reported UNIRAD trial evaluated everolimus in the adjuvant setting. The study did not meet its primary endpoint.

S1207 is a phase III randomized, placebo-controlled trial evaluating the role of everolimus in combination with ET in the adjuvant setting among patients with high-risk HR+ receptor-positive, HER2-negative BC. (NCT01674140).

Inclusion Criteria

Eligible patients:

- >18 years of age
- Histologically confirmed invasive HR-positive and HER2-negative high-risk BC
- All included patients received chemotherapy
- Four high-risk groups were defined as:
 - 1) Tumor <u>></u> 2cm node-negative disease (or pN1mi), and either an Oncotype DX[®] Recurrence Score (RS) > 25 or MammaPrint[®] high-risk category (MP high)
 - 2) 1-3 positive nodes and either RS >25, MP high or a pathological grade 3 tumor
 - 3) <u>></u>4 positive lymph nodes
 - 4) neoadjuvant chemotherapy and residual disease with <a>1 lymph node involvement

Patients were randomized 1:1 to physician's choice adjuvant ET in combination with one year of everolimus (10 mg PO daily) or ET plus placebo stratified by risk group.

Chavez et al SABCS 2022

S1207 Study Design

Chavez et al SABCS 2022

Statistical Considerations

Original design:

90% power to detect a hazard ratio of 0.75.

Sample size = 3500

Predicted risk membership

- 1. 45% (node negative high risk)
- 2. 35% (1-3 node positive high risk)
- 3. 15% (4+ positive nodes)
- 4. 5% (residual disease)

Change in design

- Changed April 2016 to reflect actual risk distribution
- No outcome information was used to change the design

Final analysis

- Planned at 219 IDFS events in the control arm or 3 years after last randomization
- Actual 211 IDFS events in the control arm

Revised design:

- 80% power to detect a hazard ratio of 0.75.
- Sample size = 1900
- Predicted risk membership
 - 1. 10% (node negative high risk)
 - 2. 10% (1-3 node positive high risk)
 - **3**. 60% (4+ positive nodes)
 - 4. 20% (residual disease)

	Baseline Characteristics	TOTAL (n=1792)	PLACEBO (n=896)	EVEROLIMUS (n=896)
Age median	(Range)	54 (22, 86)	54 (22, 85)	54 (26, 86)
Race White Black Asian Other		1529 (85%) 107 (6%) 64 (4%) 263 (15%)	757 (84%) 58 (6%) 33 (4%) 139 (16%)	772 (86%) 49 (5%) 31 (3%) 124 (14%)
	ip egative (Adjuvant chemotherapy) itive nodes (Adjuvant	169 (9%) 158 (9%) 213 (12%)	82 (9%) 79 (9%) 107 (12%)	87 (10%) 79 (9%) 106 (12%)
	tive nodes (Adjuvant chemotherapy) tive nodes (Neoadjuvant	710 (40%) 711 (40%)	357 (40%) 353 (39%)	353 (39%) 358 (40%)
	sal Status nopausal enopausal	571 (32%) 1221 (68%)	290 (32%) 606 (68%)	281 (31%) 615 (69%)

Chavez et al SABCS 2022

Treatment Summary

REASON OFF TREATMENT	TOTAL (n=1792)	PLACEBO (n=896)	EVEROLIMUS (n=896)
Treatment Completed as Planned	1079 (60%)	651 (73%)	428 (48%)
Adverse Event (AE) or Side Effect	421 (23%)	86 (10%)	335 (37%)
Refusal Unrelated to AE	163 (9%)	84 (9%)	79 (9%)
Progression/Relapse	64 (4%)	43 (5%)	21 (2%)
Death	2 (0.1%)	1 (0.1%)	1 (0.1%)
Other- not specified	63 (4%)	31 (3%)	32 (4%)

Chavez et al SABCS 2022

Primary Endpoint – IDFS

Chavez et al SABCS 2022

Primary Endpoint – IDFS: Subgroup analyses

	Placebo Events/N	Everolin I	nus IDFS HR (95% CI)	P-value	
Age			. ,		
Age < 50	77/339	55/333	0.73 (0.51,	7	
Age 50 -59	64/286	67/303	1.01 (0.72,	J.J3	
Age 60+	70/271	71/260	1.1 (0.79, ²	0.56	
Risk Group					
RiskGroup1	17/79	10/79	0.58 (0.26,	0.16 —	
RiskGroup2	19/107	18/106	0.9 (0.47,	0.76	
RiskGroup3	85/357	86/353	1.06 (0.79,	0.68	_
RiskGroup4	90/353	79/358	0.9 (0.66,	0.48	_
Menopausal Status	S				
Post-Menopausal	144/606	149/615	1.08 (0.86,	0.52	
Pre-Menopausal	67/290	44/281	0.64 (0.44,	0.02	_
Baseline Tamoxife	n				
Not received	155/673	143/653	1 (0.79,1	0.97	
Received	56/223	50/243	0.78 (0.53,	0.21	B
Baseline Al					
Not received	74/296	67/322	0.8 (0.57, ⁻	0.18	B
Received	137/600	126/574	1.02 (0.8,	0.87	
Baseline Ovarian S	Suppressi	ion			
Not received	187/781	177/796	0.96 (0.78,	0.71	_
Received	24/115	16/100	0.75 (0.4,	0.38	₽
Overall	211/896	193/896	0.94 (0.77,	0.52	
				г <u> </u>	- T - T - T - T
				0.25	0.5 1 1.5 2

Chavez et al SABCS 2022

Secondary Endpoint- OS

Chavez et al SABCS 2022

Exploratory Analysis by Menopausal Status- IDFS

COX REGRESSION MODEL	HR	95% CI	p-value
Treatment arm x Menopausal status Interaction	1.67	1.07-2.60	0.0241

Chavez et al SABCS 2022

Exploratory Analysis by Menopausal Status-OS

COX REGRESSION MODEL	HR	95% CI	p-value
Treatment arm X Menopausal status Interaction	2.41	1.27-4.57	0.0072

Chavez et al SABCS 2022

Secondary Endpoint-Toxicity

Gr 3 + Treatment Related AE

ΤΟΧΙΟΙΤΥ	Everolimus N = 874	Placebo N = 881
Any type	303 (35%)	59 (7%)
Mucositis oral	60 (7%)	2 (0%)
Lymphopenia	36 (4%)	5 (1%)
<u>Hypertriglyceridemia</u>	35 (4%)	3 (0%)
<u>Hyperglycemia</u>	33 (4%)	1 (0%)
Fatigue	22 (3%)	6 (1%)
Neutropenia	22 (3%)	3 (0%)
Leukopenia	20 (2%)	2 (0%)
Hypertension	<u> 15 (2%)</u>	6 (1%)
Diarrhea	13 (1%)	3 (0%)
Anemia	<u>10 (1%)</u>	0 (0%)
<u>Hypercholesterolemia</u>	9 (1%)	<u> 0 (0%) </u>
Skin infection	<u>8 (1%)</u>	<u>3 (0%)</u>

Chavez et al SABCS 2022

Conclusions

Addition of one year of adjuvant everolimus to standard adjuvant ET did not improve IDFS or OS.

We observed low completion rate and increased AEs among patients treated with everolimus.

Among premenopausal patients, the addition of everolimus to ET improved IDFS (HR= 0.64; 95%CI 0.44-0.94; p=0.22) and OS (HR=0.49; 95%CI 0.28-0.86; p=0.012) This observation is hypothesis generating.

Abemaciclib plus endocrine therapy for HR+, HER2-, node-positive, high-risk early breast cancer: results from a pre-planned monarchE overall survival interim analysis, including 4-year efficacy outcomes

Stephen R.D. Johnston¹, Masakazu Toi, Joyce O'Shaughnessy, Priya Rastogi, Mario Campone, Patrick Neven, Chiun-Sheng Huang, Jens Huober, Georgina Garnica Jaliffe, Irfan Cicin, Sara M. Tolaney, Matthew P. Goetz, Hope S. Rugo, Elzbieta Senkus, Laura Testa, Lucia Del Mastro, Chikako Shimizu, Ran Wei, Ashwin Shahir, Maria Munoz, Belen San Antonio, Valérie André, Nadia Harbeck, Miguel Martin

Overview of monarchE Data Cuts

Current Analysis

Analysis Time points	Interim Analysis ¹	Primary Outcome	Additional Follow-up 1 ² (AFU1)	Overall Survival Interim Analysis (OS IA2)
Date	16 March 2020	08 July 2020	01 April 2021	01 July 2022
Median Follow-up (months)	15.5	19.1	27.1	42.0
IDFS Events	323	395	565	835
Off Study Treatment*	26.4%	41.0%	89.6%	99.2%

*0.8% of patients were randomized but never entered treatment period and are not included in these percentages

- OS IA2 was planned to occur 2 years after the primary outcome analysis
- Follow up will continue to final OS analysis

¹Johnston SRD, et al. J Clin Oncol. 2020;38(34):3987-3998 ²Harbeck* N, Rastogi* P, et al. Ann Oncol. 2021;32(12):1571-1581 *co-first authors

monarchE Study Design (NCT03155997)

IDFS Benefit in ITT Persists Beyond Completion of Abemaciclib

33.6% reduction in the risk of developing an IDFS event with an increase in absolute benefit in IDFS 4-year rates (6.4%) compared to 2-and 3-year IDFS rates (2.8% and 4.8% respectively)

Johnston et al SABCS 2022

DRFS Benefit in ITT Persists Beyond Completion of Abemaciclib

34.1% reduction in the risk of developing a DRFS event with an increase in absolute benefit in DRFS 4-year rates (5.9%), compared to 2-and 3-year rates (2.5% and 4.1%, respectively)

Johnston et al SABCS 2022

Abemaciclib Treatment Benefit Deepened Over Time

	Analysis	IDFS	DRFS
landmark	Piecewise HRª (95% Cl ^b)	Piecewise HRª (95% CI ^b)	
Study_ Treatment	Year 0-1	0.782 (0.583, 1.018)	0.725 (0.519, 0.983)
	Year 1-2	0.674 (0.521, 0.858)	0.691 (0.521, 0.887)
Period	Year 2-3	0.618 (0.477, 0.788)	0.651 (0.497, 0.851)
	Year 3+	0.602 (0.428, 0.803)	0.581 (0.391, 0.818)

^aPiecewise hazard ratio as a post-hoc analysis was estimated using piecewise exponential model to assess the yearly treatment effect size;

^b95% credible intervals were calculated by equal tails in the posterior samples of Bayesian exponential models

Johnston et al SABCS 2022

OS Data Remain Immature in ITT

Fewer deaths (157 vs 173) were observed in the abemaciclib plus ET group versus the ET group

Johnston et al SABCS 2022

Fewer Patients with Metastatic Disease in the Abemaciclib arm

Survival Status

- Alive with metastatic disease
- Deaths due to breast cancer
- Deaths not related to breast cancer

Johnston et al SABCS 2022

ROCHESTER MEDICAL CENTER

Efficacy Outcomes by Cohort

	Cohort 1		Cohort 2	
	Abemaciclib + ET N=2555	ET alone N=2565	Abemaciclib + ET N=253	ET alone N=264
IDFS				
Number of events, n	317	474	19	25
HR (95% CI)	0.653 (0.	.567, 0.753)	0.773 (0.420, 1.420)	
Nominal p-value	p<0	0.0001	p = 0.4048	
4-yr IDFS rate, (95% CI)	85.5 (83.8, 87.0)	78.6 (76.7, 80.4)	NR	NR
DRFS				
Number of events, n	267	402	14	19
HR (95% CI)	0.652 (0.	.558, 0.761)	0.764 (0.383, 1.526)	
Nominal p-value	p<(0.0001	p = 0.4448	
4-yr DRFS rate, (95% CI)	87.9 (86.4, 89.3)	81.8 (79.9, 83.4)	NR	NR
OS (Immature)				
Number of events, n	147	168	10	5
HR (95% CI)	0.890 (0	.714, 1.111)	NR	

NR: Not reported. Low event number does not allow reliable statistical analysis.

Cohort 2 enrolled patients with intermediate risk by clinicopathological features. Data remain immature

Johnston et al SABCS 2022

Conclusions

- With additional follow-up, the benefit of adjuvant abemaciclib deepened in magnitude with an increase in absolute IDFS and DRFS benefit at 4 years as compared to 2- and 3-year rates
 - Benefit demonstrated across all prespecified subgroups for IDFS and DRFS
- While OS data remain immature at this time, fewer deaths were observed with abemaciclib plus ET group compared to ET alone
 - Continued follow-up is ongoing until final assessment of OS

Primary Results From the Randomized Phase II RIGHT Choice Trial of Premenopausal Patients With Aggressive HR+/HER2- Advanced Breast Cancer Treated With Ribociclib + Endocrine Therapy vs Physician's Choice Combination Chemotherapy

Yen-Shen Lu,¹ Eznal Izwadi Bin Mohd Mahidin,² Hamdy Azim,³ Yesim Eralp,⁴ Yoon-Sim Yap,⁵ Seock-Ah Im,⁶ Julie Rihani,⁷ James Bowles,⁸ Teresa Delgar Alfaro,⁸ Jiwen Wu,⁹ Melissa Gao,⁸ Khemaies Slimane,⁸ Nagi El Saghir¹⁰

 ¹National Taiwan University Hospital, Taipei, Taiwan; ²Hospital Kuala Lumpur, Kuala Lumpur, Malaysia; ³School of Medicine, Cairo University, Cairo, Egypt;
⁴Acibadem Research Institute of Senology, Acibadem University, Istanbul, Turkey; ⁵National Cancer Centre Singapore, Singapore; ⁶Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; ⁷King Hussein Cancer Center, Amman, Jordan; ⁸Novartis Pharma AG, Basel, Switzerland; ⁹Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; ¹⁰American University of Beirut Medical

Center, Beirut, Lebanon.

RIGHT Choice study design

by (2) DFI^d < or \geq 2 years

Lu et al SABCS 2022

Baseline characteristics were well balanced

Parameter, n (%)	RIB + ET n = 112	Combo CT n = 110	Parameter, n (%)	RIB + ET n = 112	Combo CT n = 110
Median age, years	44.0	43.0	Disease status		
≥40 years	80 (71.4)	72 (65.5)	De novo	71 (63.4)	73 (66.4)
Race ^a			Visceral metastatic sites ^b		
Asian	60 (53.6)	58 (52.7)	Liver	56 (50.0)	57 (51.8)
	· · · ·	· · ·	Lung	63 (56.3)	58 (52.7)
White	51 (45.5)	52 (47.3)	Liver or lung	89 (79.5)	85 (77.3)
Histological grade			Aggressive disease characte	eristic	
Grade 1	10 (8.9)	16 (14.5)	Rapid progression	23 (20.5)	18 (16.4)
Grade 2	66 (58.9)	61 (55.5)	Symptomatic non-	15 (13.4)	16 (14.5)
Grade 3	35 (31.3)	29 (26.4)	visceral disease		· · · · ·
≥50% ER+	95 (84.8)	95 (86.4)	Symptomatic visceral metastases	74 (66.1)	76 (69.1)
PR+	99 (88.4)	102 (92.7)	Visceral crisis ^c	61 (54.5)	55 (50.0)

Lu et al SABCS 2022

First-line RIB + ET achieved a statistically significant PFS benefit of \approx 1 year over combination CT in aggressive HR+/HER2- ABC

ABC, advanced breast cancer; Combo CT, combination chemotherapy; ET, endocrine therapy; HER2-, human epidermal growth factor receptor 2 negative; HR+, hormone receptor positive; HR, hazard ratio; IRT, interactive response technology; PFS, progression-free survival; RIB, ribociclib.

^a Ten patients in CT arm did not receive any treatment; ^b HR is obtained from Cox Proportional-Hazards model stratified by liver metastasis and disease-free interval per IRT.

Lu et al SABCS 2022

PFS benefit with RIB + ET over combination CT was consistent across most subgroups of patients with aggressive HR+/HER2- ABC

Out many	RIB + ET	Combo CT		
Subgroup	n/N	n/N		Hazard Ratio (95% CI)
All patients	52/112	58/110		0.54 (0.36-0.79)
Visceral crisis status				
Yes	33/61	26/55	₩ <u>+</u> +1	0.87 (0.51-1.47)
No	19/51	32/55		0.34 (0.18-0.63)
Disease free interval				, , , , , , , , , , , , , , , , , , ,
<2 years	9/13	6/9	├ →	0.94 (0.32-2.73)
≥2 years	43/99	52/101		0.52 (0.34-0.78)
Presence of liver met				
Yes	29/56	31/57	<u>⊢ ∔∙ </u>	0.60 (0.36-1.01)
No	23/56	27/53	⊢	0.55 (0.31-0.97)
Age				(
<40 years	12/32	25/38		0.38 (0.18-0.79)
≥40 years	40/80	33/72		0.71 (0.44-1.15)
De novo				
Yes	29/71	42/73	⊢ → ∔ ↓	0.40 (0.24-0.66)
No	23/41	16/37		0.92 (0.47-1.82)
Estrogen receptor sta				()
<50	2/8	3/5	├	1.46 (0.12-17.08)
≥50	47/95	50/95		0.54 (0.35-0.82)
		0.063	0.125 0.25 0.5 1 2 4	5
			Favors RIB + ET Favors C	ombo CT

ABC, advanced breast cancer; Combo CT, combination chemotherapy; ET, endocrine therapy; HER2-, human epidermal growth factor receptor 2 negative; HR+, hormone receptor positive; PFS, progression-frees urvival; RIB, ribociclib.

Median time to treatment failure (TTF) was longer with RIB + ET vs combination CT

- A sensitivity analysis^d confirmed the TTF findings in the safety set
- The 3-month treatment failure rate^e in the RIB arm was approximately half (n = 13; 11.6%; 95% CI, 6.3%-19.0%) that in the combination CT arm (n = 24; 21.8%; 95% CI, 14.5%-30.7%)

Lu et al SABCS 2022

ORR and CBR were similar between RIB + ET and combination CT

A sensitivity analysis^c confirmed the ORR and CBR findings in the safety set

Lu et al SABCS 2022

Time to onset of response (TTR) for RIB + ET was similar to combination CT

A sensitivity analysis^d confirmed the TTR findings in the safety set

Lu et al SABCS 2022

Fewer dose reductions were observed with RIB + ET vs combination CT

Parameter, n (%)	RIB + ET n = 112	Combo CT n = 100ª
Number of dose reductions		
0	81 (72.3)	54 (54.0)
1	27 (24.1)	12 (12.0)
2	4 (3.6)	14 (14.0)
≥3	0	20 (20.0)

The median duration of exposure to study treatment was 15.0 months (Q1-Q3, 7.4-24.5 months) in the RIB arm and 8.6 months (Q1-Q3, 6.1-15.0 months) in the combination CT arm^b

Lu et al SABCS 2022

Fewer TRAEs with RIB + ET vs combination CT

n (%)				RIB + ET; n = 112				Combination CT; n = 100 ^a			
			Α	ll Grac	le	G	rade 3	3/4	All Grade	•	Grade 3/4
Total AEs			11	2(100	.0)	5	34 (75	.0)	100(100.0))	71 (71.0)
Treatment-related serious	AEs			2 (1.8))		1 (0.9))	8 (8.0)		7 (7.0)
Treatment-related AEs leading to discontinuation ^b AES irrespective of causality (≥2				8 (7.1) 7 (6.3)		3) RIB or	23(23.0) 7 (7.		7 (7.0) arms)		
•				T; n = 1					; n = 100ª		,
Neutropenia	82.1%		58	3.0%			35.0%		49.0%		
Leukopenia		48.2%		23	.2%	7.0%	26	.0%			
Anemia			33.9%		5.4 <mark>%</mark>	9.0%		40.0%	, D		
Alanine aminotransferase increased				19.6%	5.4 <mark>%</mark>	6.0 <mark>%</mark>		30.0%			
spartate aminotransferase increased				19.6%	7. <mark>1%</mark>	6.0 <mark>%</mark>	2	29.0%			
Nausea				12.5%		1.0%	2	7.0%			
Vomiting				7.	1% <mark>0.9</mark> %			30.0%			
Diarrhea					2.7%	1.0%	26	.0%			
Alopecia				10.7%		1.0%	20.0%	6			
Fatigue	All-Gra			4	.5%	2.0%	25	.0%	All-Grade AEs		
Palmar-plantar erythrodysesthesia	Grade				2.7%	5.0 <mark>%</mark>		32.0%	Grade 3-4 AEs		
90 70 50 30 10 0 10 30 50 70 90 Percentage (%)											

• Two patients (1.8%) in RIB arm^c and none in CT arm showed grade ≥3 QT prolongation

Lu et al SABCS 2022

Medicine of the Highest Order

Conclusions

- •RIGHT Choice is the first prospective study comparing a CDK4/6 inhibitor + ET with combination CT and demonstrating the PFS superiority of RIB + ET over combination CT in patients with HR+/HER2- ABC with aggressive clinical features of rapidly progressing or highly symptomatic disease, including visceral crisis
 - First-line RIB + ET demonstrated a statistically significant PFS benefit (≈1 year longer) vs combination CT (24.0 vs 12.3 months; HR, 0.54) in pre/perimenopausal patients with aggressive HR+/HER2- ABC
- RIB + ET also showed longer TTF than combination CT with similar TTR and ORR between the two treatment groups, matching the high tumor response rate seen with combination CT

PACE: Palbociclib After CDK and Endocrine Therapy A Randomized Phase II Study of Fulvestrant +/-Palbociclib after Progression on CDK4/6 inhibitor for HR+/HER2- Metastatic Breast Cancer

Erica L. Mayer¹; Yue Ren¹; Nikhil Wagle¹; Reshma Mahtani²; Cynthia Ma³; Angela DeMichele⁴; Massimo Cristofanilli⁵; Jane Meisel⁶; Kathy D Miller⁷; Trevor Jolly⁸; Elizabeth Riley⁹; Rubina Qamar¹⁰; Priyanka Sharma¹¹; Sonya Reid¹²; Natalie Sinclair¹; Meredith Faggen¹; Caroline Block¹; Naomi Ko¹³; Ann Partridge¹; Wendy Chen¹; Michelle DeMeo¹; Victoria Attaya¹; Amanda Okpoebo¹; Yuan Liu¹⁴; Eric Gauthier¹⁴; Harold J. Burstein¹; Meredith Regan¹; Sara M. Tolaney¹

¹Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; ²Miami Cancer Institute, Miami, FL; ³Washington University School of Medicine, St Louis, MO; ⁴Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; ⁵Weill Cornell Medicine, New York, NY; ⁶Winship Cancer Institute, Emory University, Atlanta, GA; ⁷Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN; ⁸University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC; ⁹University of Louisville Health – Brown Cancer Center, Louisville, KY; ¹⁰Aurora Cancer Care, Milwaukee, WI; ¹¹University of Kansas Medical Center, Westwood, KS; ¹²Vanderbilt-Ingram Cancer Center, Nashville, TN; ¹³Boston Medical Center, Boston, MA; ¹⁴Pfizer, Inc, New York, NY.

PACE Trial: Schema

Primary objective: To compare PFS (RECIST-confirmed) for fulvestrant+palbociclib vs. fulvestrant alone

Secondary objectives: To compare PFS for fulvestrant+palbociclib+avelumab vs fulvestrant alone,

response endpoints, safety, outcomes in predefined molecular subgroups including ESR1, PIK3CA, and Rb.

PACE: Prior Treatment Characteristics

	Fulvestrant (n=55)		Fulvestrant + Palbociclib (N=111)		Palboo Avel	trant + ciclib + umab =54)	Overall (n = 220)	
	Ν	%	N	%	N	%	N	%
Prior adjuvant endocrine exposure* Endocrine resistant Endocrine sensitive	10 45	18.2 81.8	32 78	28.8 70.3	16 37	29.6 68.5	58 160	26.4 72.7
Prior CDK4/6i Palbociclib Ribociclib Abemaciclib	52 1 2	94.5 1.8 3.6	102 5 3	91.9 4.5 2.7	46 4 4	85.2 7.4 7.4	200 10 9	90.9 4.5 4.1
Duration of prior CDK4/6i + ET 6-12 months > 12 months	10 45	18.2 81.8	26 84	23.4 75.7	16 38	29.6 70.4	52 167	23.6 75.9
Prior chemotherapy for MBC	11	20.0	16	14.4	9	16.7	36	16.4
Line of MBC therapy initiated in PACE First line Second Line > Second Line	3 42 10	5.5 76.4 18.2	5 83 21	4.5 74.8 18.9	2 44 7	3.7 81.5 13.0	10 169 38	4.5 76.8 17.3
Any systemic therapy between prior CDK4/6i and randomization	5	9.1	16	14.4	5	9.3	26	11.8

Unknown values are omitted from the table.

*Endocrine resistant: recur <1y of a dj ET. Endocrine sensitive: de novo MBC, or no adj ET, or recur >1y after a dj ET. Adapted from ESO-ESMO guidelines, Ann Oncol 2020

Mayer et al SABCS 2022

PACE: Progression Free Survival ITT

Mayer et al SABCS 2022

ROCHESTER MEDICAL CENTER

PACE: Overall Survival

PACE: Treatment Exposure and Toxicity

No dose reductions of fulvestrant or avelumab were permitted.

No patients were reported to have stopped all protocol therapy specifically due to unacceptable treatmentrelated toxicity.

	Fulvestran Palbocic (N=111	lib	Fulvestran Palbociclib Aveluma (N=54)	+
	Ν	%	Ν	%
Palbociclib starting dose [*] 125 mg qd 100 mg qd 75 mg qd	68 29 10	61.3 26.1 9.0	28 15 10	51.9 27.8 18.5
Palbociclib hold for toxicity	40	36.0	31	57.4
Palbociclib dose reduction	25	22.5	11	20.4
Avelumab hold for toxicity	n/a	n/a	21	38. 9

*3 patients did not start protocol therapy

PACE: Exploratory Analysis of Baseline Mutation and Outcome

Subgroup	F+P Events Pa	itients	F Events Pat	tients		Hazard Ratio (90% CI)
Progression-free survival						
All Patients	79	111	34	55		1.11 (0.74–1.66)
Any PIK3CA mutation						
WT	45	63	18	36	++-	1.44 (0.91-2.29)
Mutation	29	39	12	12		0.56 (0.32-0.99)
Any ESR1 mutation					1	
WT	31	47	13	25	' +	1.70 (0.99-2.95)
Mutation	43	55	17	23		0.68 (0.42-1.09)
Any Rb1 mutation						
WT	67	92	25	42		1.23 (0.83-1.81)
Mutation	7	10	5	6		0.95 (0.36-2.49)
					0.4 0.5 0.75 1	1.5 2
					Favors F+P F	avors F

ESR1 mutation 54%, PI3K mutation 35%, Rb 12.5%

PACE: Conclusions

- •Among patients with HR+/HER2- MBC, combining palbociclib with fulvestrant beyond progression on prior CDK4/6i did not significantly improve PFS compared with using fulvestrant alone.
- The observed longer PFS when a PD-L1 inhibitor was added to fulvestrant+palbociclib is an intriguing signal in this HR+ population and deserves further study.
- Baseline ctDNA analyses suggest differential impact of targeted agents based on mutational status.

EMERALD phase 3 trial of elacestrant versus standard of care endocrine therapy in patients with ER+/HER2- metastatic breast cancer: updated results by duration of prior CDK4/6i in metastatic setting

Bardia A,^{1*} Bidard FC,^{2*} Neven P,³ Streich G,⁴ Montero AJ,⁵ Forget F, ⁶ Mouret-Reynier MA,⁷ Sohn JH,⁸ Taylor D,⁹ Harnden KK,¹⁰ Khong H,¹¹ Kocsis J,¹² Dalenc F,¹³ Dillon P,¹⁴ Babu S,¹⁵ Waters S,¹⁶ Deleu I,¹⁷ Garcia-Saenz J,¹⁸ Bria E,¹⁹ Cazzaniga M,²⁰ Aftimos P,²¹ Cortes J,²² Tonini G,²³ Tarek Sahmoud,²⁴ Habboubi N,²⁴ Grzegorzewski KJ,²⁴ Kaklamani V^{25**}

Oral SERD Trial Landscape in Pretreated mBC

	EMERALD ¹	SERENA-2 ²	EMBER-3 ³	AMEERA-3 ⁴⁻	acelERA ⁶⁻⁹
Treatment	Elacestrant	Camizestrant	Imlunestrant +/- abemaciclib	Amcenestrant	Giredestrant
Control Arm	fulvestrant / AIs	fulvestrant	fulvestrant / exemestane	fulvestrant / AIs / tamoxifen	fulvestrant / AIs
Phase (n)	Phase 3 (478)	Phase 2 (240)	Phase 3 (800)	Phase 2 (367)	Phase 2 (303)
Patients	Men or postmenopausal women	Postmenopausal women	Men or postmenopausal women		Men or women (any menopausal status)
Prior CDK4/6i	Required (100%)	Permitted	Permitted	Permitted (79.7%)	Permitted (42%)
Allowed Prior Fulvestrant	YES	NO	NO	YES	YES
Allowed Prior Chemotherapy in mBC	YES	YES	NO	YES	YES
Data readout	Positive (Registrational)	Positive (Non-Registrational)	Ongoing	Negative	Negative

1. Bidard FC, et al. J Clin Oncol. 2022;40(28):3246-3256. 2. SERENA2. ClinicalTrials.gov identifier: NCT04214288. A ccessed November 18, 2022, https://clinicaltrials.gov/ct2/show/NCT04214288; 3. EM BER-3. Clinical Trials.gov identifier: NCT04975308. Accessed November 18, 2022. https://clinicaltrials.gov/ct2/show/NCT04975308; 4. A MEERA3. ClinicalTrials.gov identifier: NCT04959484. A ccessed November 18, 2022. https://clinicaltrials.gov/ct2/show/NCT04075308; 4. A MEERA3. ClinicalTrials.gov identifier: NCT040959484; 5. Tolaney SM, et al. Ann Oncol. 2022; 3 (7):S88-S121 (A bstr 212MO); 6. Evaluate V antage. https://www.evaluate.com/vantage/articles/news/trial-results/roche-has-rare-breast-cancer-setback. Accessed July 20, 2022; 7. aceIERA ClinicalTrials.gov identifier: NCT04576455, 8. Martin M, et al. J Clin Oncol. 2021;39(15):abstr TPS1100; 9. Martin Jimenez M, et al. Ann Oncol. 2022;37():S88-S121 (A bstr 212MO): (abstr 211MO). (abstr 211MO).

EMERALD Phase 3 Study Design

- ESR1-mutation status^f
- Prior treatment with fulvestrant
- Presence of visceral metastases

All Patients: PFS by Duration of CDK4/6i

Duration on CDK4/6i in the metastatic setting

	_	6 Months 5%)	_	2 Months 7%)	At Least 18 Months (46.7%)		
	Elacestrant (n=202)	SOC Hormonal Therapy (n=205)	Elacestrant (n=150)	SOC Hormonal Therapy (n=160)	Elacestrant (n=98)	SOC Hormonal Therapy (n=119)	
Median PFS, months (95% CI)	2.79 (1.94 - 3.78)	1.91 (1.87 - 2.14)	3.78 (2.33 - 6.51)	1.91 (1.87 - 3.58)	5.45 (2.33 - 8.61)	3.29 (1.87 - 3.71)	
PFS rate at 6 months, % (95% CI)	34.40 (26.70 - 42.10)	19.88 (12.99 - 26.76)	41.56 (32.30 - 50.81)	21.72 (13.65 - 29.79)	44.72 (33.24 - 56.20)	25.12 (15.13 - 35.10)	
PFS rate at 12 months, % (95% CI)	21.00 (13.57 - 28.43)	6.42 (0.75 - 12.09)	25.64 (16.49 - 34.80)	7.38 (0.82 - 13.94)	26.70 (15.61 - 37.80)	8.23 (0.00 - 17.07)	
PFS rate at 18 months, % (95% CI)	16.24 (8.75 - 23.74)	3.21 (0.00 - 8.48)	19.34 (9.98 - 28.70)	3.69 (0.00 - 9.77)	21.03 (9.82 - 32.23)	4.11 (0.00 - 11.33)	
Hazard ratio (95% CI)	0.688 (0.535 - 0.884)		0.613 (0.453 - 0.828)		0.703 (0.482 - 1.019)		

Kaklamani et al SABCS 2022

All Patients: PFS by Duration of CDK4/6i

At least 6 mo CDK4/6i

Elacestrant 202 90 53 37 29 24 16 12 10 9 8 7 6 1 1 0 SOC 205 71 32 20 13 6 3 2 2 1 1 0

	100.			
(%) ទ	80.	- P		
Probability of PFS (%)	60.			
babilit	40.			
Pro	20.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	0.	Elacestrant		
		0 5 10 15 20	25 3	0
		Time (months)		

3 2 2

98

1 1 0

Elacestran

t

3.78

(2.33 -

6.51)

25.64

7 6 6

1 1 0

SOC

Hormonal

Therapy

1.91

(1.87 -

3.58)

7.38

At least 12 mo CDK4/6i

At least 18 mo CDK4/6i

Elacestrant 98 51 35 26 23 18 11 10 8 7 7 6 6 1 1 0 SOC 119 47 22 15 10 5 2 2 2 1 1 0

	Elacestran t	SOC Hormonal Therapy		
Median PFS, months (95% CI)	5.45 (2.33 - 8.61)	3.29 (1.87 - 3.71)		
PFS rate at 12 months, % (95% CI)	26.70 (15.61 - 37.80)	8.23 (0.00 - 17.07)		
Hazard ratio (95% CI)	0.703 (0.482 - 1.019)			

Kaklamani et al SABCS 2022

Elacestrant 150 76 48 35 28 23 15 11

Median PFS, months

SOC 160 55 26 18 13 6

(95% CI)

PFS rate at 12

	Elacestran t	Hormonal Therapy		
Median PFS, months (95% CI)	2.79 (1.94 - 3.78)	1.91 (1.87 - 2.14)		
PFS rate at 12 months, % (95% CI)	21.00 (13.57 - 28.43)	6.42 (0.75 - 12.09)		
Hazard ratio (95% CI)	0.688 (0.535 - 0.884)			

600

Patients with *ESR1*-mut Tumors: PFS by Duration of CDK4/6i

Duration on CDK4/6i in the metastatic setting

		6 Months 3%)		2 Months 6%)	At Least 18 Months (50.0%)		
	Elacestrant (n=103)	SOC Hormonal Therapy (n=102)	Elacestrant (n=78)	SOC Hormonal Therapy (n=81)	Elacestrant (n=55)	SOC Hormonal Therapy (n=56)	
Median PFS, months (95% CI)	4.14 (2.20 - 7.79)	1.87 (1.87 - 3.29)	8.61 (4.14 - 10.84)	1.91 (1.87 - 3.68)	8.61 (5.45 - 16.89)	2.10 (1.87 - 3.75)	
PFS rate at 6 months, % (95% CI)	42.43 (31.15 - 53.71)	19.15 (9.95 - 28.35)	55.81 (42.69 - 68.94)	22.66 (11.63 - 33.69)	58.57 (43.02 - 74.12)	27.06 (13.05 - 41.07)	
PFS rate at 12 months, % (95% CI)	26.02 (15.12 - 36.92)	6.45 (0.00 - 13.65)	35.81 (21.84 - 49.78)	8.39 (0.00 - 17.66)	35.79 (19.54 - 52.05)	7.73 (0.00 - 20.20)	
PFS rate at 18 months, % (95% CI)	20.70 (9.77 - 31.63)	0.00 ()	28.49 (14.08 - 42.89)	0.00 ()	30.08 (13.94 - 47.42)	0.00 ()	
Hazard ratio (95% CI)	0.5 (0.361	5 17 - 0.738)	0.410 (0.262 - 0.634) (0			0.466 270 - 0.791)	

Kaklamani et al SABCS 2022

Patients with ESR1-mut Tumors: PFS by **Duration of CDK4/6i**

100

80

60.

40

20

SO

.

Elacestrant

5

10

Standard of Care

Probability of PFS (%)

At least 6 mo CDK4/6i

Elacestran Elacestrant 103 50 33 25 20 16 11 9 8 7 6 5 5 1 1 0 SOC 102 34 16 11 9 5 2 1 1 0

	Elacestran t	SOC Hormonal Therapy		
Median PFS, months (95% CI)	4.14 (2.20 - 7.79)	1.87 (1.87 - 3.29)		
PFS rate at 12 months, % (95% CI)	26.02 (15.12 - 36.92)	6.45 (0.00 - 13.65)		
Hazard ratio (95% CI)	0.517 (0.361 - 0.738)			

78 81	42 26		24 10	20 9	16 5	11 2	9 1	8 1	7 0	6	5	5	1	1	0
								Ela	ice t	str	an)C 10r rap	
Median PFS, months (95% CI)							8.61 (4.14 - 10.84)			1.91 (1.87 - 3.68)					
PFS rate at 12 months, % (95% CI)							35.81 (21.84 - 49.78)				8.39 (0.00 - 17.66)				
Hazard ratio (95% CI)) 0.410 (0.262 - 0.634)					.)				

15

Time (months)

20

25

30

At least 12 mo CDK4/6i

At least 18 mo CDK4/6i

	Elacestran t	SOC Hormonal Therapy		
Median PFS, months (95% CI)	8.61 (5.45 - 16.89)	2.10 (1.87 - 3.75)		
PFS rate at 12 months, % (95% CI)	35.79 (19.54 - 52.05)	7.73 (0.00 - 20.20)		
Hazard ratio (95% CI)	0.466 (0.270 - 0.791)			

Kaklamani et al SABCS 2022

Conclusions

EMERALD is the only pivotal trial in $2^{nd}/3^{rd}$ -line mBC with 100% prior CDK4/6i usage.

Duration of CDK4/6i was associated with PFS in the EMERALD trial. The longer the duration of prior CDK4/6i, the longer PFS on elacestrant as compared with SOC.

This was even more pronounced in patients with *ESR1*-mut tumors, where patients who had at least 12 months of prior CDK4/6i duration achieved a mPFS of 8.6 months with elacestrant vs 2 months mPFS with SOC.

These results showed that elacestrant significantly prolongs PFS vs SOC with a low rate of adverse events.

Elacestrant can become an important oral endocrine monotherapy agent in 2nd/3rd line as an alternative to combination therapies that are associated with challenging safety profiles.

Camizestrant, a next-generation oral SERD vs fulvestrant in post-menopausal women with advanced ER-positive HER2-negative breast cancer: Results of the randomized, multi-dose Phase 2 SERENA-2 trial

Mafalda Oliveira, MD, PhD¹, Denys Pominchuk, PhD², Zbigniew Nowecki MD³, Erika Hamilton, MD⁴, Yaroslav Kulyaba, MD⁵, Timur Andabekov, PhD⁶, Yevhen Hotko, MD⁷, Tamar Melkadze, MD⁸, Gia Nemsadze, MD, PhD⁹, Patrick Neven, MD¹⁰, Yuriy Semegen, MD¹¹, Vladimir Vladimirov, MD¹², Claudio Zamagni, MD¹³, Hannelore Denys, MD, PhD¹⁴, Frédéric Forget, MD¹⁵, Zsolt Horvath, MD, PhD¹⁶, Alfiya Nesterova, MD, PhD¹⁷, Maxine Bennett, PhD¹⁸, Bistra Kirova, MBChB, MSc¹⁹, Teresa Klinowska, PhD²⁰, Justin P O Lindemann, MBChB, MB¹⁸, Delphine Lissa, PharmD, PhD¹⁸, Alastair Mathewson, PhD¹⁸, Christopher J Morrow, PhD¹⁸, Zuzana Traugottova, MD²¹, Ruaan van Zyl, PhD²², Ekaterine Arkania, MD²³

SERENA-2 study overview

Key inclusion/exclusion criteria:

- Recurrence or progression on at least one line of ET
- No prior fulvestrant or oral SERD in ABC
- No more than one line of ET in ABC setting
- No more than one line CT in ABC setting
- Measurable and nonmeasurable disease

- Primary endpoint: PFS (investigator assessment*)
- · Secondary endpoints: CBR24, ORR, OS, safety
- **Translational endpoints:** serial ctDNA analysis including *ESR1*m, serial CTCs analysis

Oliveira et al SABCS 2022

Primary endpoint: PFS by investigator assessment

*Statistically significant; aHRs adjusted for prior use of CDK4/6i and liver/lung metastases

CDK4/6i: CDK4/6 inhibitor; CI: confidence interval; HR: hazard ratio; PFS: progression-free survival

Oliveira et al SABCS 2022

PFS in patients by detectable ESR1m

 In the sub-population of patients with detectable ESR1m at baseline, camizestrant at both doses produces a clinically meaningful improvement in PFS over fulvestrant

Oliveira et al SABCS 2022

Objective response rate and clinical benefit rate at 24 weeks

			Adjusted	Comparison against fulvestrant			
Group	n	Number (%) of patients with response	response rate (%)	Odds ratio	90% CI	2-sided p-value	
ORR							
Camizestrant 75 mg	70	11 (15.7)	15.7	1.43	0.63-3.33	0.4789	
Camizestrant 150 mg	65	13 (20.0)	20.3	1.96	0.88-4.51	0.1675	
Fulvestrant	68	8 (11.8)	11.5				
CBR24							
Camizestrant 75 mg	74	35 (47.3)	48.8	1.48	0.84-2.64	0.2554	
Camizestrant 150 mg	73	36 (49.3)	51.0	1.62	0.91-2.89	0.1658	
Fulvestrant	73	28 (38.4)	39.1				

The analysis was performed using logistic regression with adjustments for prior use of CDK 4/6 inhibitors and presence of lung and/or liver metastasis.

Includes unconfirmed responses.

Objective response determined for patients with measurable disease only.

Clinical benefit defined as patients with best objective response of complete response or partial response in the first 25 weeks or who have stable disease for at least 23 weeks after randomization.

• Camizestrant at 75 and 150 mg increases both ORR and CBR24 over fulvestrant

Oliveira et al SABCS 2022

Conclusions

- SERENA-2 met its primary objective: camizestrant at both 75 and 150 mg doses improves PFS over fulvestrant in post-menopausal women with ER+/HER2- ABC
- Camizestrant delivers statistically significant and clinically meaningful PFS benefit at both
- 75 and 150 mg doses over fulvestrant in the overall population
- A clinically meaningful PFS benefit was observed across the pre-specified subgroups of unmet medical need (post-CDK4/6i, lung/liver metastases, *ESR1*m and evidence of ER-driven disease)
- ■Both camizestrant doses are well tolerated, with infrequent Grade ≥3 TRAEs, dose reductions and discontinuations
- The results of SERENA-2 support the further development of camizestrant in ER+ BC

ARV-471, a PROTAC[®] estrogen receptor (ER) degrader in advanced ER-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer: phase 2 expansion (VERITAC) of a phase 1/2 study

Sara A Hurvitz,¹ <u>Anne F Schott</u>,² Cynthia Ma,³ Erika P Hamilton,⁴ Rita Nanda,⁵ George Zahrah,⁶ Natasha Hunter,⁷ Antoinette R Tan,⁸ Melinda L Telli,⁹ Jesus Anampa Mesias,¹⁰ Rinath Jeselsohn,¹¹ Pamela Munster,¹² Haolan Lu,¹³ Richard Gedrich,¹³ Cecile Mather,¹³ Janaki Parameswaran,¹³ Hyo S Han¹⁴

¹UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA; ²Rogel Cancer Center, University of Michigan Health, Ann Arbor, MI; ³Washington University, St Louis, MO; ⁴Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; ⁵University of Chicago Medicine, Chicago, IL; ⁶Norwalk Hospital, Norwalk, CT; ⁷Seattle Cancer Care Alliance, Seattle, WA; ⁸Levine Cancer Institute, Atrium Health, Charlotte, NC; ⁹Stanford University School of Medicine, Stanford, CA; ¹⁰Albert Einstein College of Medicine, Bronx, NY; ¹¹Dana-Farber Cancer Institute, Boston, MA; ¹²University of California San Francisco, San Francisco, CA; ¹³Arvinas Operations, Inc, New Haven, CT; ¹⁴Moffitt Cancer Center, Tampa, FL

Background

ARV-471 is a selective, orally administered PROTAC[®] protein degrader that targets wild-type and mutant ER¹

ARV-471 directly binds an E3 ubiquitin ligase and ER to trigger ubiquitination of ER and its subsequent proteasomal degradation

 In contrast, SERDs indirectly recruit the ubiquitin-proteasome system, secondary to conformational changes and/or immobilization of ER²

Limitations of the SERD fulvestrant include its intramuscular route of administration³ and only 40%–50% ER protein degradation at its optimal dose^{4,5}

ARV-471 treatment yielded substantially greater ER degradation and tumor growth inhibition than fulvestrant in breast cancer xenograft models¹

Phase 1/2 Study Design^a

First-in-human, open-label, 3-part study of ARV-471 alone or in combination with palbociclib in patients with ER+/HER2- locally advanced/metastatic breast cancer

Phase 1 dose escalation (Part A)	Phase 2 cohort expansion (Part B; VERITAC)	Phase 1b combination (Part C)		
Treatment ARV-471 orally	Treatment ARV-471 orally	Treatment ARV-471 plus palbociclib orally		
 Primary objective Evaluate the safety and tolerability of ARV-471 in order to estimate the MTD and select the RP2Ds 	 Primary objective Assess the antitumor activity of ARV-471 	 Primary objective Evaluate the safety and tolerability of ARV-471 plus palbociclib and select the RP2D of the combination 		

^aClinicalTrials.gov: NCT04072952 ER=estrogen receptor; HER2=human epidermal growth factor receptor 2; MTD=maximum tolerated dose; RP2D=recommended phase 2 dose

Hurvitz et al SABCS 2022

TRAEs Reported in ≥10% of Patients Overall (VERITAC)

	200 mg QD (n=35)			500 r	500 mg QD (n=36)			Total (N=71)		
n (%)	Grade 1	Grade 2	Grade 3/4ª	Grade 1	Grade 2	Grade 3/4 ^ь	Grade 1	Grade 2	Grade 3/4	
Any TRAE	13 (37)	13 (37)	2 (6)	11 (31)	9 (25)	3 (8)	24 (34)	22 (31)	5 (7)	
Fatigue	8 (23)	6 (17)	0	7 (19)	2 (6)	1 (3)	15 (21)	8 (11)	1 (1)	
Nausea	2 (6)	3 (9)	0	6 (17)	1 (3)	0	8 (11)	4 (6)	0	
Arthralgia	4 (11)	0	0	5 (14)	0	0	9 (13)	0	0	
Hot flush	6 (17)	0	0	1 (3)	0	0	7 (10)	0	0	
AST increased	3 (9)	1 (3)	0	2 (6)	1 (3)	0	5 (7)	2 (3)	0	

^aGrade 3/4 TRAEs in the 200-mg QD cohort were grade 3 QT prolonged (n=1; same TEAE that led to discontinuation as shown in the prior slide) and

Hurvitz et al SABCS 2022

grade 3 thrombocytopenia and grade 4 hyperbilirubinemia (n=1) ^bGrade 3/4 TRAEs in the 500-mg QD cohort were grade 3 fatigue, decreased appetite, and neutropenia (n=1 each) AST=aspartate aminotransferase; QD=once daily; TEAE=treatment-entergent_adversesevent; TRAE=treatment+telatedT adversesevent

Primary Endpoint: Clinical Benefit Rate^a (VERITAC)

	200 mg QD (n=35)	500 mg QD (n=36)	Total (N=71)
CBR, % (95% CI)	37.1 (21.5–55.1)	38.9 (23.1–56.5)	38.0 (26.8–50.3)
Patients with mutant ESR1	(n=19)	(n=22)	(n=41)
CBR, % (95% CI)	47.4 (24.4–71.1)	54.5 (32.2-75.6)	51.2 (35.1–67.1)

^aRate of confirmed complete response or partial response or stable disease \geq 24 weeks CBR=clinical benefit rate; *ESR1*=estrogen receptor 1 gene; QD=once daily

Hurvitz et al SABCS 2022

Tumor Response^a (VERITAC)

^aIncludes patients with measurable disease (n=44); 1 patient with measurable disease at baseline and PD as best overall response was excluded due to lack of complete set of target lesion measurements on-study

^bPatient had an unconfirmed partial response

ESR1=estrogen receptor 1 gene; NE=not evaluable due to missing data for best overall response; PD=progressive disease; PR=confirmed partial response; QD=once daily; SD=stable disease

Hurvitz et al SABCS 2022

Progression-Free Survival^a (VERITAC)

Hurvitz et al SABCS 2022

ER Degradation^a With 200 mg QD ARV-471 (Phase 1/VERITAC)

Median ER degradation was 69% (range: 28%–95%)

Mean ER degradation was 71%

^aER immunoreactivity analyzed by QIF using the AQUA method, and ER positivity threshold derived by examining AQUA scores and visually inspecting all samples in the dataset to determine a cut point for ER positivity; *ESR1* mutation status determined from tumor biopsy (n=1) or circulating tumor DNA (n=8) AQUA=automated quantitative analysis; ER=estrogen receptor; *ESR1*=estrogen receptor 1 gene; QD=once daily; QIF=quantitative immunofluorescence

Hurvitz et al SABCS 2022

Conclusions

- ARV-471 showed clinical activity in the VERITAC expansion cohorts of heavily pretreated patients (4 median prior regimens, 100% with prior CDK4/6 inhibitors, and 79% with prior fulvestrant) with ER+/HER2advanced breast cancer
 - CBR was 37.1% and 38.9% in the 200- and 500-mg QD cohorts, respectively
 - Clinical benefit was also observed in the ESR1 mutation subgroup (CBR of 47.4% and 54.5% in the 200- and 500-mg QD cohorts, respectively)
- ARV-471 had a manageable AE profile; most AEs were grade 1/2
- ARV-471 200 mg QD was selected as the phase 3 monotherapy dose based on comparable efficacy, favorable tolerability, and robust ER degradation

AE=adverse event; CBR=clinical benefit rate; CDK=cyclin-dependent kinase; ER=estrogen receptor; ESR1=estrogen receptor 1 gene; HER2=human epidermal growth factor receptor 2; QD=once daily

Practice changing?

- Confirmatory:
 - MonarchE with longer follow-up
 - CDK 4/6 inhibition in visceral disease/crisis
- Intriguing
 - Elacestrant benefit in patients with longer CDK 4/6 inhibitor exposure
- Disappointing (but not really surprising)
 - Palbociclib through progression (trial design different from MAINTAIN)
 - Adjuvant everolimus

88

