



## **HPV-Positive HNSCC:**

Emerging Biomarkers for Predicting HPV+ HNSCCs and Potential Use of FDA-Approved MEK Inhibitors for Treating HPV Precancers and De-Intensifying HPV-Cancer Therapeutics

Michelle A. Ozbun, Ph.D.

The Maralyn S. Budke Endowed Professor of Viral Oncology

Departments of Molecular Genetics & Microbiology, Obstetrics & Gynecology

The University of New Mexico School of Medicine

The UNM Comprehensive Cancer Center

The UNM Center for Infectious Disease and Inflammation



THE







National Institute of Dental and Craniofacial Research





# **HPV-Induced HNSCC: Challenges & Opportunities**

- Worldwide, HPV-positive OPSCC constitutes  $\approx 1/3$  of all OPSCC cases.
- HPV-positive OPSCC are more prevalent in developed countries; North America and Europe have the highest number of cases.



## HPV-Induced HNSCC: Challenges & Opportunities



- In the US, HPV vaccine coverage averages 54.2% (13- to 17year-olds)
- Unvaccinated individuals and those currently infected are at risk for HPV-precancers and cancers
- HPV-related cancer incidence is expected to increase through the year 2040 and beyond, with HPV+ OPSCC outnumbering CxCa cases.



Within 1-2 years

Up to decades

## HPV-Induced HNSCC: Challenges & Opportunities



- Challenge 1: In contrast to the HPV disease at the cervix, no screening programs or identifiable pre-malignant lesions have been characterized for HPV+ OPSCC.
- HPV+ OPSCC have increased overall survival (OS) compared to those with HPV-negative disease
  - This group of younger patients could benefit from <u>therapeutic</u> <u>deintensification</u> to reduce the long-term toxicities in anticipation of longer survival
  - Challenge 2: Need to increase our understanding of HPV infections/ disease to provide rationale for de-intensifying therapies.

# Challenge 1: HPV+ OPSCC Arises in Oral Crypts





Dis. Prim. 6:92.

# Potential Screening Biomarker: HPV cfDNA



#### **HPV-mediated malignant transformation**



- <u>HPV circulating-tumor DNA (ctDNA)</u>: released by cancer cells under necrosis, apoptosis, or *via* active secretion mechanisms in the bloodstream compartment
- <u>HPV circulating-free DNA (cfDNA):</u> A prospective study reported that cfHPV DNA detection in plasma is specific biomarkers with high sensitivity, representing a useful non-invasive diagnostic approach to identify HPV-related HNSCCs

### A case-control study showed that in a subset of patients, cfHPV16 DNA was detected 3 years before the clinical diagnosis of HPV16-related HNSCC (none of the controls were +)

Modified from: Johnson *et al.* (2020) *Nat. Rev. Dis. Prim.* 6:92.

Siravegna et al. (2022) Clin Cancer Res 28: 719–727. Re

Galati *et al.* (2022) *Tumor Virus Res.* 30:1335-1343. Rettig *et al.* (2022) *Int. J. Cancer* 151(7):1081-1085.

# Potential Screening Biomarkers: E6 Antibodies

#### HPV-mediated malignant transformation



- HPV16 E6 serum Abs have high sensitivity (>90%) and specificity (>99%) for the diagnosis of concurrent HPV16-positive OPSCC
- HPV16 E6 Abs are strongly associated with HPVinduced tumors <u>at the time of or prior to cancer</u> <u>diagnosis (>100-fold risk)</u>, preceding cancer diagnosis by ≈ 5-15 years
- E6 Abs are rare in cancer-free individuals (<1% prevalence)</li>

### Positive predictive value for HPV+ OPSCC risk by E6 Ab is low; the number needed to screen to identify one HPV+ OPSCC likely exceeds several thousands.

Modified from: Johnson *et al.* (2020) *Nat. Rev. Dis. Prim.* 6:92.

Galati *et al.* (2023) *Tumor Virus Res.* 14:200245. Kreimer *et al.* (2019) *Ann Oncol* 30:1335-1343. Busch *et al.* (2022) *EClinicalMedicine* 53:101659. D'Souza *et al.* (2023) *Cancer* 129:2373-2384.

# Potential Screening Biomarkers: E6 Ab + ctDNA



#### **HPV-mediated malignant transformation**



- These biomarkers are both detectable in 85–90% of HPV-positive OPSCC patients <u>at diagnosis</u> with 95–100% specificity
- Rettig *et al.* compared both in the pre-diagnostic setting to understand their temporal relationship with respect to clinical disease manifestation:
  - 9 cases, 45 matched controls

In this exploratory cohort, HPV16 E6 antibodies were more commonly detected than cf/ctHPV16 DNA in blood collected prior to diagnosis of HPV16-positive HNC.

E6 seroconversion occurs before tumor DNA is shed into the circulation at detectable levels among individuals later diagnosed with HPV-positive OPC

Modified from: Johnson et al. (2020) Nat. Rev. Dis. Prim. 6:92.

Rettig et al. (2023) Oral Oncology 141:106417.

Challenge 2: Increase understanding of HPV disease to provide rationale for de-intensifying therapies



- HPV persistence, precancer, and cancer are <u>driven</u> by expression of E6 and E7 oncoproteins (inactivates p53, inactivates Rb -> p16<sup>INK4A</sup>, respectively).
- HPV+ cancers are addicted to E6/E7 expression.
- Can we suppress HPV E6/E7 expression to restore tumor suppressor functions and render cancer cells susceptible to lower doses of cancer treatments?

## FDA-Approved MEK Inhibitors Suppress Papillomavirus E6 and E7 Expression



Genome



The antiviral effects of a MEK1/2 inhibitor promote tumor regression in a preclinical model of human papillomavirus infection-induced tumorigenesis

Adrian J. Luna<sup>a,1</sup>, Jesse M. Young<sup>a,2</sup>, Rosa T. Sterk<sup>a</sup>, Virginie Bondu<sup>a</sup>, Fred A. Schultz<sup>b</sup>, Donna F. Kusewitt<sup>b,d</sup>, Huining Kang<sup>c,d</sup>, Michelle A. Ozbun<sup>a,d,\*</sup> https://pubmed.ncbi.nlm.nih.gov/37429527/

## HPV16 E6/E7 Transcription in HNSCC cells is MEK/ERK Signaling-Responsive



HPV genome integration invariably includes the LCR upstream of E6/E7

Luna et al. (2021) PLoS Pathog. 17(1):e1009216

#### UM-SCC-47 HNSCC cells with integrated HPV16 genomes treated with **trametinib** for 24 h





Trametinib, an allosteric **MEK1/2** inhibitor, has anti-viral effects in cell culture

## HPV16 E6/E7 Transcription in Raft Tissues is MEK/ERK Signaling-Responsive

HNSCC tissues with integrated HPV16 genomes

3D Organotypic Epithelial (Raft) Tissues







## HPV16 E6/E7 Transcription in Raft Tissues is MEK/ERK Signaling-Responsive

HNSCC tissues with integrated HPV16 genomes

Trametinib, an allosteric MEK1/2 inhibitor, has anti-viral effects in the tissue context



Luna et al. (2021) PLoS Pathog. 17(1):e1009216

UM-SCC-47 Organotypic Tissues

MEK Inhibitors Have Growth Suppressive Effects in HPV Tumor Xenografts

SCC cells with integrated HPV16 genomes

HPV genome integration invariably includes the LCR upstream of E6/E7

**FDA-Approved Small Molecules** 

- Cobimetinib = MEK1 inhibitor
- Trametinib = MEK1/2 inhibitor



n=5-6 mice/group 2-way Anova fold changes, NSG mice



**MEK1/2 inhibition is superior** to MEK1 inhibition (tissue analyses are pending)

Berggren, Ozbun unpublished

## Trametinib Sensitizes HPV16+ OPSCC Cell Lines to Radiation in vitro



Berggren, Ozbun unpublished

# SUMMARY

- HPV cfDNA and/or E6 antibodies in blood are biomarkers for HPV+ OPSCC
  - Non-invasive screening
  - The presence of E6 Abs precedes cancer diagnosis by  $\approx$  5-15 years
- MEK1/2 inhibition effectively suppresses HPV E6 and E7 expression
  - Suppresses tumor growth <u>in the absence of T cell involvement</u> (may be more effective in immunocompetent hosts)
  - Sensitizes HPV+ OPSCC cells to lower radiation doses
  - Reduced E6/E7 expression leads to decreased PD-L1 expression and restored MHC Class I presentation – could this relieve immune checkpoint blockade?
- MEK/ERK signaling represents a targetable HPV pathway for precancers and cancers