Highlights of Basic Science
Basic Science Topics

- GS1_03. Crosstalk between osteoblasts and breast cancer cells alters breast cancer proliferation through multiple mechanisms
- GS3_06. Dynamics of breast cancer relapse reveal molecularly defined late recurring ER-positive subgroups: Results from the METABRIC study
- GS3_07. Clinical utility of circulating tumor cell count as a tool to choose between first line hormone therapy and chemotherapy for ER+ HER2- metastatic breast cancer: Results of the phase III STIC CTC trial.
- GS1_05. Apobec3 induced mutagenesis sensitizes triple negative breast cancer to immunotherapy by activating B-cells and CD4+ T-cells
Bussard et al. Crosstalk between osteoblasts and breast cancer cells alters breast cancer proliferation through multiple mechanisms
Abs. GS1-03
Crosstalk between osteoblasts & breast cancer cells alters breast cancer proliferation

Objective: Analyze mechanisms of crosstalk between osteoblasts & breast cancer cells that alter breast cancer cell proliferation

- A subpopulation of osteoblasts are altered in the tumor niche in both murine and human samples
- Educated osteoblasts express different proteins than naïve osteoblasts
- Exposure to EO conditioned medium or exosomes reduces triple negative and ER+ breast cancer proliferation \textit{in vitro}
- Co-culture with EOs increases p21 expression in triple negative and ER+ breast cancer cells EOs have tumor-inhibitory properties
Dynamics of breast cancer relapse reveal molecularly defined late recurring ER-positive subgroups: Results from the METABRIC study

Oscar M. Rueda, Stephen-John Sammut, Suet-Feung Chin, Jennifer L Caswell-Jin, Jose A Seoane, Maurizio Callari, Rajbir Batra, Bernard Pereira, Alejandra Bruna, H Raza Ali, Elena Provenzano, Bin Liu, Michelle Parisien, Cheryl Gillett, Steven McKinney, Andrew R. Green, Leigh Murphy, Arnie Purushotham, Ian O. Ellis, Paul D. Pharoah, Cristina Rueda, Samuel AJR Aparicio, Carlos Caldas, Christina Curtis
Dynamics of breast cancer relapse: Results from the METABRIC study

- A subset of women with early stage ER+ BC have a persistent risk of recurrence and death up to 20 years post diagnosis
- 3240 breast cancer patients derived from 5 tumor banks in the UK and Canada diagnosed between 1977-2005
- Long term clinical follow-up; median 14 years
- Risk of relapse and timing of relapses differ across the major breast cancer subgroups
- Identify four high-risk subgroups that account for 26% of ER+ tumors and the majority of late relapses; each with characteristic ‘driver’ alterations
- Integrative subtypes improve the prediction of late relapse compared with clinical covariates
- Future direction - opportunities for improved patient stratification and biomarker-driven clinical trials for the quarter of ER-positive women with persistent risk of recurrence
Bidard et al. Clinical utility of circulating tumor cell count as a tool to choose between first line hormone therapy and chemotherapy for ER+ HER2- metastatic breast cancer: Results of the phase III STIC CTC trial Abs. GS3-07
Clinical utility Circulating Tumor Cells: Results of the phase III STIC CTC trial

- No predictive marker to choose between hormone therapy (HT) vs chemoT (CT) in metastatic BC
- HT is preferred in absence of endocrine resistance or visceral crisis
- Goal of this trial: to compare CTC-driven vs clinician's choice for 1st line therapy in HR+ metastatic BC
- Primary endpoint: progression free survival non-inferiority

Main inclusion criteria
- HR+ HER2- MBC
- No prior therapy for MBC
- Condition compatible with HT or CT
- PS 0-3
- Evaluate disease
- Informed consent

1:1 randomization stratified on PS / center / disease-free interval

Clinician’s choice
CTC count: blinded

- HT (Clin_{low})
- CT (Clin_{high})

CTC count (CellSearch®) ?
Clinician’s choice: dismissed
- < 5 CTC /7.5mL \rightarrow HT (CTC_{low})
- \geq 5 CTC /7.5mL \rightarrow CT (CTC_{high})

Trial opened from 02/2012 to 07/2016 in 17 centers
N= 778 pts randomized

Median follow-up: 30 months
N= 605 PFS events (78% maturity)
N= 230 OS events (30% maturity)
Clinical utility Circulating Tumor Cells: Results of the phase III STIC CTC trial

Conclusion: In patients with ≥5 CTC/7.5mL, chemotherapy is better than single agent endocrine therapy.
Hollern et al. Apobec3 induced mutagenesis sensitizes triple negative breast cancer to immunotherapy by activating B-cells and CD4+ T-cells Abs. GS1-05
Apobec3 induced mutagenesis sensitizes triple negative breast cancer to immunotherapy by activating B-cells and CD4+ T-cells

- TNBC mouse models will present variable responses to immune checkpoint inhibitors, and that by using sensitive and resistant mouse models we can identify biomarkers of response
- Increasing mutation load of TNBC mouse models sensitizes tumors to immune checkpoint therapy and increases immune cell infiltration.
- Created a RNA-seq dataset of 290 mouse mammary tumors from multiple GEM Models annotated for treatment &
Apobec3 induced mutagenesis sensitizes triple negative breast cancer to immunotherapy by activating B-cells and CD4+ T-cells

- Identified a B Cell/T Cell Co-cluster expression signature that predicts response to immune checkpoint therapy, neoadjuvant chemotherapy, and trastuzumab+paclitaxel
- Identified a functional role for B Cells in mediating a response to immune checkpoint inhibitors in GEM Models.