Enforced expression of TCF3 or BCL11B enhances T progenitor differentiation from human induced pluripotent stem cells

Jeremy Allred MD¹, Jemma Nichols PhD³, Robin Williams MD², Eduardo Cruz³, Ben Kopp³, Nate Payne³, Bruce Blazar MD³.

University of Minnesota, Dept of Medicine, Division of Hematology, Oncology and Transplant.
 University of Minnesota, Dept of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy

Background and Significance

Induced pluripotent stem cells (**iPSC**) derived hematopoietic stem and progenitor cells (**HSPCs**) are being developed clinically as an attractive alternative source of "off the shelf" T lymphocytes for cellular therapy for human malignancies and GVHD. **However, iPSCderived HSPCs are significantly less efficient at generating functional T cells compared to other phenotypically similar sources such as umbilical cord blood-derived (UCB) HSPCs in** *vitro.*¹ A rigorous understanding of what underpins this difference is lacking in the literature and is a significant barrier to clinical translation. To address this deficiency, we have established a monolayer differentiation system for human iPSCs that reproducibly and efficiently generates HSPCs with broad myelolymphoid potential via a hemogenic endothelial intermediate.

<u>Hypothesis:</u> iPSC-derived HSPCs have inferior T cell potential compared to UCB-derived equivalents due to altered regulation of key lymphoid transcription factors TCF3 and BCL11B, leading to competing populations of lineage-biased progenitors

Results

Figure 1 – Monolayer protocol efficiently generates definitive hematopoietic progenitors with myelolymphoid potential from human induced pluripotent stem cell lines. iPSCs from a variety of sources were tested using a monolayer HSPC differentiation protocol. **A)** Outline of differentiation protocol used for this studies. **B)** Representative flow cytometry plots demonstrating cell surface phenotype of hemogenic endothelial (HE) cells generated at Day 4 and phenotype of hematopoietic stem and progenitor cells (HSPCs) generated at Day 8. **C)** Yield of D4 HE and Day 8 HSPCs expressed as a HE or definitive HSPC per iPSC input at D-1 for lines tested. CEv5, CEv11 and DF19-9 were derived from Fibroblasts. TnV1, Tsm were derived from T cells. H1 is a human embryonic stem cell line. (**= p<0.05)

References: 1. Brauer et al. Trends in Immunology 2016

Figure 2 – iPSC-derived HSPCs placed into T progenitor promoting conditions develop canonical markers of T progenitor differentiation, however competing population of CD56+ NK/ILC progenitors compromises development. A) Outline of OP9-DL1 stromal cell co-culture method of T lymphoid differentiation from HPSCs. B) Representative flow plot demonstrating acquisition of canonical markers of T lymphoid specification in both UCB and iPSC-derived HSPCs (green boxes) and the outgrowth of a strongly CD56+ alternative cell type found only in iPSC-derived cultures. C) Quantitation of CD56+ progenitor outgrowth in iPSC-derived HSPC cultures showing increasing CD56+ frequency at expense of T progenitor frequency.

Figure 3 – Regulation of critical transcription factors governs T vs NK/ILC lineage fate decisions. We hypothesized that altered regulation of critical transcription factors that enforce a T phenotype and inhibit a NK/ILC phenotype might be responsible for the CD56+ cells generated from iPSC-HPSC cultures. **A)** Outline of developmental relationship between T and NK/ILC cell lineages. The critical transcription factors TCF3 (E2A) and BCL11B and their role in T cell commitment are highlighted. **B)** Overview of Piggybac doxycycline inducible transcription factor expression vectors that were constructed.

Results

Figure 4 - **Inducible overexpression of TCF3 during T cell commitment enhances T prog commitment from human iPSC HSPCs at Day 14 of differentiation.** TCF3 expression was doyxycycline during T progenitor differentiation. **A)** Representative flow cytometry plot enhanced CD38+CD56- commitment and CD7+ as well as CD5+CD7+ Tprogenitors at Day differentiation with dox induced TCF3 expression. **B)** Quantitation of n=4 experiments of significant increases in the frequency of CD38+ lymphoid progenitors as well as increase and CD5+CD7+ Tprogenitor populations. There was no decrease in CD56+ NK progenitor

Figure 5 - Inducible overexpression of BCL11B during T cell commitment enhances T procommitment and decreases NK cell commitment from human iPSC HSPCs at Day 21 of d BCL11B expression was induced using doyxycycline during T progenitor differentiation. A) phenotype of inducible BCL11B engineered iPSC line with and without addition of doxycyc differentiation, measured at day 21 of differentiation demonstrating enhanced frequency acquisition as well as total CD7+ and CD7+5+ T progenitor commitment. **B)** Quantitation of population subsets showing enhancement of CD38+ lymphoid progenitors, a decrease in the population and increase in CD7+ and CD7+CD5+ T progenitors. **C)** Gated on CD5+CD7+ cell demonstrating the relative frequency of CD4 and CD8 expression amongst the CD45+CD3-CD5+CD7+ T progenitors at D21. This shows enhanced commitment to canonical CD4+ interpositive and double positive in the +dox group and reduction in noncanonical CD8+ interpositive cells.

	Conclusion
or uced using onstrating of T cell onstrating total CD7+ * = p<0.05)	 Monolayer differentiation protocol for human iPSCs produces efficient and reproducible generation of HSPCs with lymphoid potential iPSC-derived HSPCs follow canonical phenotypic stages of T lymphoid differentiation similar to UCB-derived HSPCs but also generate a competing population of CD56+ NK/ILC progenitors that impede T cell differentiation. Inducible expression of TCF3 and BCL11B during T cell differentiation enhances T cell commitment at D14 and D21 respectively. BCL11B expression also reduced commitment to the CD56+ alternative lineage and enhanced canonical CD4 commitment. These data support the hypothesis that insufficient activation of Pro-T lymphoid commitment genes during T cell development from iPSC may explain the reduced efficiency of T cell generation
	Future Directions
genitor ferentiation. Surface line during T cell	 Explore the transcriptional state of iPSC derived HSPCs compared to UCB-HSPCs with single cell RNA-seq Identify critical surface receptors, transcription factors and signaling pathways upstream of TCF3 and BCL11B that regulate their expression during iPSC T cell commitment Test enhanced iPSC-derived HSPC protocols for enhanced T cell efficiency and yield
D38+ tical 5+ NK/ILC	Funding
56- diate single te single	