GM-CSF Blockade during Chimeric Antigen Receptor T Cell Therapy Reduces Cytokine Release Syndrome and Neurotoxicity and May Enhance Their Effector Functions

Hefazi M¹, Sterner RM¹,², Sakemura R¹, Cox MJ¹, Yang N¹, Khadka RH¹, Forsman CL¹, Hansen MJ³, Jin F³, Ayasoufi K³, Schick KJ⁴, Walters DK³, Ahmed O⁵, Chappell D⁵, Sahmoud T⁵, Durrant C⁵, Nevala WK³, Patnaik MM¹, Pease LR³, Hedin KE³, Kay NE¹, Johnson AJ³, Kenderian SS¹,³.

¹: Division of Hematology; ²: Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, MN; ³: Department of Immunology; ⁴: Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN; and ⁵: Humanigen, Burlingame, CA.

9/26/2019
CRS and neurotoxicity post CAR-T cell therapy

- CAR-T cell therapy is limited by the development of CRS and NT
- CRS is related to elevation of cytokines and T cell expansion
- Exact NT mechanism unknown

Modified from Locke et al, ASH 2017

Neelapu et al, NEJM 2017

Gust et al, Can Discov 2017

Santomasso et al, Can Discov 2018

Cell Population

<table>
<thead>
<tr>
<th></th>
<th>NE Grade 0-2 (N=15)</th>
<th>NE Grade ≥3 (N=10)</th>
<th>NE Grade ≥3 / Grade 0-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD14+ (myeloid cells)</td>
<td>18 (11, 436)</td>
<td>306 (125, 1063)</td>
<td>17</td>
</tr>
</tbody>
</table>

Modified from Locke et al, ASH 2017
GM-CSF depletion during CAR-T cell therapy

Does GM-CSF blockade impair CAR-T cell function?

Does GM-CSF blockade ameliorate CAR-T cell associated toxicities?
GM-CSF neutralization does not inhibit CAR-T cell effector functions

- Anti-human GM-CSF ab 10mg/kg daily x 10 days
- Control antibody 10mg/kg daily x 10 days
- 1-1.5x10^6 CART19 or UTD
- Anti tumor effect
- Survival
GM-CSF neutralization does not inhibit CAR-T cell effector functions

- Anti-human GM-CSF ab 10mg/kg daily x 10 days
- Control antibody 10mg/kg daily x 10 days
- UTD + control ab
- UTD + GM-CSF ab
- CART19 + control ab
- CART19 + GM-CSF ab

Graph showing survival rates and anti-tumor effect over time.
GM-CSF neutralization enhances CAR-T cell effector function in a patient-derived xenograft model

- **Patient ALL 2x10^6**
- **NSG mice 10-13 weeks**
- **Bleeding**
- **Anti-human + anti-murine GM-CSF ab 10mg/kg daily x 10 days**
- **PBMCs 1x10^6**
- **2.5x10^6 CART19**
- **Control antibodies 10mg/kg daily x 10 days**
- **2.5x10^6 CART19**

Graph:
- **Before Treatment**
- **Day 10 Post CART**
- **Day 35 Post CART**
- **Before Treatment**
- **Day 10 Post CART**
- **Day 35 Post CART**

- **CD19+ cells/ul**
- **CART19 + control ab**
- **CART19 + GM-CSF ab**
- **Significance:**
 - **ns**
 - ****
 - ****
 - ****
GM-CSF CRISPR knockout CAR-T cells exhibit reduced production of GM-CSF and enhanced anti-tumor activity
GM-CSF depletion after CAR-T cell therapy

Does GM-CSF blockade impair CAR-T cell function?

Does GM-CSF blockade ameliorate CAR-T cell associated toxicities?
GM-CSF neutralization in a patient-derived xenograft model for CRS and NT

Busulfan
NSG mice
Patient B-ALL Blasts 1-3x10^6

CART19
High Dose

anti-human + anti-murine GM-CSF ab or control antibodies

Bleeding Engraftment

MRI Brain Tissue
Weight Cytokines

~10–13 weeks

High Burden
GM-CSF neutralization *in vivo* prevents CRS after CART19 therapy in a xenograft model.

Human Cytokines and Chemokines

<table>
<thead>
<tr>
<th>Untreated</th>
<th>IgG</th>
<th>GM-CSF Ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGF</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>FGF-2</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>TNF-α</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>IL-12</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>IFN-α</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>IL-13</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>IL-18</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>IL-17α</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>IL-5</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>IL-10</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>MIP-1b</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>MCP-1</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>IP-10</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>KC</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>MIP-1α</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Mouse Cytokines and Chemokines

<table>
<thead>
<tr>
<th>Untreated</th>
<th>IgG</th>
<th>GM-CSF Ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM-CSF</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>IL-1α</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>IL-1β</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>IL-2</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>IL-4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>IL-6</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>IL-9</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>IL-10</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>IP-10</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>KC</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>MCP-1</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>MIG</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>
GM-CSF neutralization *in vivo* ameliorates NT after CART19 therapy in a xenograft model

Graph:

- Untreated
- CART19 + Isotype Control
- CART19 + GM-CSF Ab

Day 5

Legend:

- **Gadolinium enhanced T1-hyperintensity** (cubic mm)
- **Bar chart** showing statistical significance:
 - Untreated
 - CART19 + Isotype Control
 - CART19 + GM-CSF Ab

Significance:

- **** indicates significant difference (2-tailed t-test, **p** < 0.01)
- * indicates significant difference (2-tailed t-test, *p* < 0.05)
GM-CSF neutralization *in vivo* ameliorates NT after CART19 therapy in a xenograft model

- Untreated xenografts
- CART19 + control ab
- CART19 + GM-CSF ab

hCD3+ cells/hemisphere

- Untreated xenografts
- CART19 + control ab
- CART19 + GM-CSF ab

Murine CD11b bright%

- Untreated xenografts
- CART19 + control ab
- CART19 + GM-CSF ab

CD19+ cells/hemisphere
Conclusions

- GM-CSF blockade does not impair CAR-T cell functions
- GM-CSF blockade enhances CAR-T cell activity in certain models
- GM-CSF blockade ameliorates CAR-T cell associated toxicities

Clinical trials of CART19 combination with lenzilumab are planned
Acknowledgements

Kenderian Lab
Saad Kenderian*
Reona Sakemura
Michelle J. Cox
Nan Yang
Cynthia L. Forsman
Mehrdad Hefazi
Kendall J. Schick
Michael Ruff
Baustin M. Welch
German Martinez

Pease Lab
Michael J. Hansen

Johnson Lab
Roman H. Khadka
Fang Jin
Katayoun Ayasoufi

Jelinek Lab
Denise K. Walters
Renee Tschumper

Markovic Lab
Wendy K. Nevala

Neil E. Kay

Karen E. Hedin

Mrinal M. Patnaik

Humanigen
Cameron Durrant
Omar Ahmed
Dale Chappell
Tarek Sahmoud

Funding
- K12CA090628
- NCCN
- Center for Individualized Medicine
- Regenerative Medicine Minnesota
- Predolin Foundation

[Logos of NCCN, NIH, and Mayo Clinic]
Questions and Discussion
hefazitororghabeh.mehrdad@mayo.edu