Thyroid and Salivary Cancer Updates

Prakash Neupane MD

BEST HOSPITALS USNEWS

3, 10, 11, 12, 15, 16, 20, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 42, 43.

Salivary Gland cancer

Occurs in glands of: **»**Parotid **»Submandibular »Sublingual** »Minor salivary glands

Salivary Gland cancer

Fewer than 10% of epithelial H&N cancers.

Association with prior Radiation exposure.¹

WHO classification lists more than 20 <u>different subtypes</u> of salivary gland cancers.²

Due to small numbers, histologic & prognostic heterogeneity, it is difficult to conduct trials

 Belsky JL, Tachikawa K, Cihak RW, Yamamoto T. Salivary gland tumors in atomic bomb survivors, Hiroshima-Nagasaki, 1957 to 1970. JAMA. 1972 Feb 14;219(7):864-8
 Skalova A et al (WHO classification of tumors series, 5th ed.; vol. 9). Available. from: <u>https://tumourclassification.iarc.who.int/chapters/52</u>

THE UNIVERSITY OF KANSAS CANCER CENTER

Classification of Salivary Cancers Over the Years.

Cancer Type and Molecular Alterations

4742

European Archives of Oto-Rhino-Laryngology (2023) 280:4739-475

Table 1 Selected genetic alterations in salivary gland	Tumour type	Gene	Mechanism	Prevalence
malignancies [11, 14, 20]	Acinic cell carcinoma	NR4A3	Fusion/activation	86%
	Adenoid cystic carcinoma	MYB	Fusion/activation/amplification	80%
		MYBL1	Fusion/activation/amplification	10%
		NOTCH	Mutation	14%
	Basal cell adenocarcinoma	CYLD	Mutation	29%
	Carcinoma ex pleomorphic adenoma	PLAG1	Fusion/amplification	73%
		HMGA2	Fusion/amplification	14%
		TP53	Mutation	60%

NCI Comprehensive Cancer Center

THE UNIVERSITY OF KANSAS

Cancer Type and Molecular Alterations

Eur Arch Otorhinolaryngol **280**, 4739–4750 (2023). https://doi.org/10.1007/s00405-023-08110-w

Epithelial-myoepithelial carcinoma	HRAS	Mutation	78%
Hyalinizing clear cell carcinoma	EWSR1-ATF1	Fusion	93%
Intraductal carcinoma			
Intercalated duct subtype	NCOA4-RET	Fusion	47%
Apocrine subtype	PIK3CA	Mutation	High
	HRAS	Mutation	High
Salivary duct carcinoma	HER2	Amplification	31%
	FGFR1	Amplification	10%
	TP53	Mutation	56%
	PIK3CA	Mutation	33%
	HRAS	Mutation	33%
	AR	Copy gain	35%
	PTEN	Loss	38%
	CDKN2A	Loss	10%

THE UNIVERSITY OF KANSAS

Cancer Type and Molecular Alterations

Eur Arch Otorhinolaryngol **280**, 4739–4750 (2023). https://doi.org/10.1007/s00405-023-08110-w

Microsecretory adenocarcinoma	MEF2C-SS18	Fusion	>90%
Mucinous adenocarcinoma	AKT1 E17K	Mutation	100%
	TP53	Mutation	88%
Mucoepidermoid carcinoma	CRTC1-MAML2	Fusion	40-90%
	CRTC3-MAML2	Fusion	6%
	CDKN2A	Deletion	25%
Myoepithelial carcinoma	PLAG1	Fusion	38%
	EWSR1	Rearrangement	13%
Polymorphous adenocarcinoma			
Classic subtype	PRKD1	Mutation	73%
Cribriform subtype	PRKD1	Fusion	38%
	PRKD2	Fusion	14%
	PRKD3	Fusion	19%
Sebaceous adenocarcinoma	MSH2	Loss	10%
Secretory carcinoma	ETV6-NTRK3	Fusion	>90%
	ETV6-RET	Fusion	2-5%

BEST HOSPITALS

ancer Center Designated by the National Cancer Institute THE UNIVERSITY OF KANSAS

Helpful to get tissue NGS that includes RNA fusion panel upfront on all high-risk disease.

The University of Kansas Cancer Center

Classification of Benign Salivary Epithelial Tumors

Eur Arch Otorhinolaryngol 280, 4739–4750 (2023). https://doi.org/10.1007/s00405-023-08110-w

Fig. 2 Changes in classifications of salivary benign epithelial tumours

Major Salivary Gland Cancers

Adenoid cystic carcinoma, 95 (37.8%)

- Mucoepidermoid carcinoma, 46 (18.3%)
- Salivary duct carcinoma, 31 (12.4)
- Adenocarcinoma, 29 (11.6%)
- Acinic cell carcinoma, 12 (4.8%)
- Undifferantiated carcinoma, 7 (2.8%)
- Myoepithelial carcinoma, 7 (2.8%)
- Carcinoma ex pleomorphic adenoma, 4 (1.6%)
- Oncocytic carcinoma, 2 (0.8%)
- Clear cell carcinoma, 1 (0.4%)
- Other 10 (4%)

Head and Neck 21 April 2023 <u>https://doi.org/10.1002/hed.27376</u> THE UNIVERSITY OF KANSAS

Cancer Center

Minor Salivary Gland Cancers

- Adenoid cystic carcinoma, 82 (42.7%)
- Adenocarcinoma, 37 (19.3%)
- Undifferantiated carcinoma, 28 (14.6%)
- Mucoepidermoid carcinoma, 17 (8.9%)
- Myoepithelial carcinoma, 8 (4.2%)
- Salivary duct carcinoma, 6 (3.1%)
- Intestinal type carcinoma, 4 (2.1%)
- Carcinoma ex pleomorphic adenoma, 2 (1%)
- Clear cell carcinoma, 2 (1%)
- Acinic cell carcinoma, 1 (0.5%)
- Oncocytic carcinoma, 1 (0.5%)
- Lymphoepithelial carcinoma, 1 (0.5%)
- Other 3 (1.6%)

Head and Neck 21 April 2023 https://doi.org/10.1002/hed.27376

Salivary Gland cancer

Most common types

- Adenoid cystic carcinoma
- Adenocarcinoma / ductal

Common Targets

– Ductal – AR, Her2 neu

- MASC -Mammary analogue secretory carcinoma (MASC) of the salivary gland: (NTRK) Low-grade tumors

- Indolent course
- Curable with local Tx

High-grade mucoepidermoid or adeno

Aggressive and Frequently metastasize

Treatment

Surgery

Mainstay of Tx for all resectable primary & nodal metastasis

• Add adjuvant XRT if adverse pathologic features

Radiation based Tx- mostly palliative.

• For unresectable tumors

NCI Comprehensive Cancer Center

Adjuvant Treatment

No randomized trials so far.

Radiation alone remains the standard of care in high risk of recurrence after surgery.

RTOG 1008 Phase II/ III trial still enrolling.

THE UNIVERSITY OF KANSAS CANCER CENTER

High Risk Factors (RTOG 1008)

- Intermediate-grade adenocarcinoma or intermediate-grade mucoepidermoid carcinoma;
- High-grade adenocarcinoma or high-grade mucoepidermoid carcinoma or salivary duct carcinoma;
- High-grade acinic cell carcinoma or high-grade (>30% solid component) adenoid cystic carcinoma.
- Pathologic stage T3-4 or N1-3 or T1-2, N0 with a close (≤1mm) or microscopically positive surgical margin

Adjuvant CRT vs Radiation Alone A National database Taiwan retrospective review from Taiwan

Scientific Reports | (2022) 12:20862

https://doi.org/10.1038/s41598-022-25468-9

THE UNIVERSITY OF KANSAS

NCDB review of adjuvant therapy

THE UNIVERSITY OF KANSAS

Survival According to Risk Factors

NC

The University of Kansas

CANCER CENTER

BEST

IOSPITAL

JSNews

CRT vs Radiation Alone in Adjuvant

Head & Neck. Gordon et al DOI: 10.1002/hed.27222

FIGURE 3 Kaplan-Meier survival curves of propensity-score matched groups receiving adjuvant radiotherapy or adjuvant chemoradiation. CRT, chemoradiation; RT, radiotherapy [Color figure can be viewed at wileyonlinelibrary.com] FIGURE 4 Kaplan-Meier survival curves of propensity-score matched groups with mucoepidermoid carcinoma, adenocarcinoma, adenoid cystic carcinoma, acinar cell carcinoma, or intraductal receiving adjuvant radiotherapy or adjuvant chemoradiation. CRT, chemoradiation; RT, radiotherapy [Color figure can be viewed at wileyonlinelibrary.com]

BEST

IS.News

THE UNIVERSITY OF KANSAS

Adjuvant radiation vs Chemoradiation

- To date, No evidence of clear benefit to add chemotherapy to radiation in adjuvant setting. No prospective trial data available.
- In practice, high risk group is still considered for concurrent chemoradiation if no significant comorbidity exists and have good performance status.
- Result from a phase III randomized trial (RTPG 1008) is expected to help for better guidance and stronger evidence.

Recurrent and Metastatic Disease HER2 Positivity as a Target

Histological Subtype	Study Included	Number of patients	HER2 positivity estimate (95% CI)
Salivary duct carcinoma	37	1105	43% (95% Cl: 36% – 51%)
Carcinoma ex pleomorphic adenoma	14	218	39% (95% Cl: 32% – 45%)
Squamous cell carcinoma	5	39	17% (7.5%-33%)
Adenocarcinoma NOS	14	274	13% (7.6% – 21%)
Intraductal carcinoma	1	9	11% (0.28% – 48%)
Poorly differentiated carcinoma	4	15	6.7% (0.17%-32%).
Mucoepidermoid carcinoma	15	591	5.5% (2.9% – 9.6%).
Myoepithelial carcinoma	9	70	4.3% (1.4% – 13%)
Epithelial-myoepithelial carcinoma	2	56	1.8% (0.04%-9.6%)
Acinic cell carcinoma	10	274	0.45% (0.0097% - 18%)
Adenoid cystic carcinoma	14	541	0.15% (0.037% - 5.4%)
Polymorphus adenocarcinoma	3	50	0%
Basal cell carcinoma	5	33	0%
Oncocytic carcinoma	3	14	0%
Lymphoepithelial carcinoma	2	5	0%
Clear cell carcinoma	1	1	0%
Total	50	3372	

The University of Kansas

Systemic Therapy - NCCN

SYSTEMIC THERAPY FOR SALIVARY GLAND TUMORS

Recurrent, Unresectable, or Metastatic Salivary Gland Tumors (with no surgery or RT option)					
• The choice of systemic therapy should be individualized based on patient characteristics (eg, PS, goals of therapy).					
Preferred Regimens • None					
Other Recommended Regimens • Cisplatin/vinorelbine ¹ • Cisplatin/doxorubicin/cyclophosphamide ² (category 2B) • Paclitaxel (category 2A for non-adenoid cystic carcinoma [ACC]; category 2B for ACC) ³ • Carboplatin/paclitaxel ^{4,5} • Carboplatin/gemcitabine ⁶	Useful in Certain Circumstances• Androgen receptor (AR) therapy for AR+ tumors• Leuprolide7• Bicalutamide8• Abiraterone9• Goserelin (category 2B) ^{10,11,12} • NTRK therapy for NTRK gene fusion-positive tumors• Larotrectinib ^{13,14} • Entrectinib ¹⁵ • HER2-targeted therapy for HER2+ tumors ^a • Trastuzumab ^{b,16} • Ado-trastuzumab emtansine (TDM-1) ¹⁷ • Trastuzumab/pertuzumab ^{b,18} • Docetaxel/trastuzumab deruxtecan-nxki ²⁰ • Sorafenib (category 2B) ²¹ • Axitinib + avelumab for ACC (category 2B) ²³ • Lenvatinib for ACC (category 2B) ²⁴ • Pembrolizumab (for microsatellite instability-high [MSI-H], mismatch repair deficient [dMMR], TMB-H [≥10 mt/Mb] tumors) ²⁵ • Dabrafenib/trametinib for <i>BRAF</i> V600E-positive tumors ²⁶ • Selpercatinib for <i>RET</i> gene fusion-positive tumors ²⁷				

BEST HOSPITALS USNEWS CARCER 2022-23

Cancer Center Designated by the National Cancer Institute The University of Kansas

Thyroid Cancer

BEST HOSPITALS USNews CARCER 2022-23

Incidence of Thyroid Carcinoma.

Surveillance, Epidemiology, and End Results Program (SEER) Cancer Statistics Review, 1975–2018 [Internet]. Bethesda (MD): National Cancer Institute; 2021. Apr 15 [cited 2021 Nov 24]. Available from: <u>http://seer.cancer.gov/csr/1975_2018</u>.

Thyroid

- 2.4-fold increase in incidence between 1973 and 2002
- Mortality rate stable at 0.5 deaths per 100,000 people
- Papillary thyroid cancer is increasing (not other types)
 - Nearly 90% of cancers are subclinical or smaller than 2 cm in size
 - Early-stage cancers may account for most of the observed changes in incidence

Classification – 2 types

Cells of origin:

- Papillary thyroid carcinomas (PTC)
- Follicular thyroid carcinomas (FTC)
- Hürthle-cell carcinomas
- Medullary thyroid carcinomas (MTC)
- Anaplastic thyroid carcinomas (ATC)

4% 2% 2% (parafollicular cells) 1%

90%

Surveillance, Epidemiology, and End Results Program (SEER) Cancer Statistics Review, 1975–2018 [Internet]. Bethesda (MD): National Cancer Institute; 2021. Apr 15 [cited 2021 Nov 24]. Available from: <u>http://seer.cancer.gov/csr/1975_2018</u>.

Histologic Subtypes

Well-differentiated types

- Papillary
- Follicular
- Mixed tumors (papillary & follicular)
- Follicular variant of papillary
- Hurthle cell (variant of follicular ca)

Bad (well differentiated)

Ugly (Anaplastic)

Prognosis

10 yr survival rate for differentiated

thyroid cancer = 90%

Treatment

Differentiated thyroid cancer : papillary and follicular

- Surgery
 - Extent of removal is controversial
 - Many experts recommends removal of the entire thyroid
 - Complications: recurrent laryngeal nerve injury □ vocal cord paralysis
 - Hypocalcemia 2/2 hypoparathyroidism
 - Partial removal [the affected lobe and isthmus]
 - for better risk pts (young, small tumors)
- Levothyroxine suppression
- Radioactive iodine
- External beam XRT and chemo : reserved for palliation for refractory metastatic disease

Gordon et al JAMA Otolaryngol Head Neck Surg. 2022;148(12):1156-1163. doi:10.1001/jamaoto.2022.3360

The University of Kansas Cancer Center

Metastatic Disease, Iodine Refractory

Systemic Therapy Regimens for Metastatic Disease					
Preferred Regimens					
Dabrafenib/trametinib ²	Dabrafenib 150 mg PO	Twice daily			
(BRAF V600E mutation positive)	Trametinib 2 mg PO	Once daily			
Larotrectinib ³ (<i>NTRK</i> gene fusion positive)	100 mg PO	Twice daily			
Entrectinib ⁴ (<i>NTRK</i> gene fusion positive)	600 mg PO	Once daily			
Pralsetinib ⁵ (<i>RET</i> gene fusion-positive)	400 mg PO	Once daily			
Selpercatinib ⁶	120 mg PO (<50 kg)	Turino dailur			
(RET gene fusion-positive)	160 mg PO (≥50 kg)	Twice daily			
Other Recommended Regimens					
Paglitaval ⁸	60–90 mg/m² IV	Weekly			
Pacitaxer	135–200 mg/m ²	Every 3-4 weeks			
D	20 mg/m² IV	Weekly			
Doxorubicin	or 60–75 mg/m² IV	Every 3 weeks			
Dealitemet/and aniatin1 (antenna 20)	Paclitaxel 60–100 mg/m ² IV, carboplatin AUC 2 IV	Weekly			
Pacitaxei/carbopiaun (category 2b)	or Paclitaxel 135–175 mg/m² IV, carboplatin AUC 5–6 IV	Every 3-4 weeks			
Docetaxel/doxorubicin ¹ (category 2B)	Docetaxel 60 mg/m ² IV, doxorubicin 60 mg/m ² IV (with G-CSF) or	Every 3-4 weeks			
	Docetaxel 20 mg/m ² IV, doxorubicin 20 mg/m ² IV	Weekly			
Useful in Certain Circumstances					
Doxorubicin/cisplatin ⁸	Doxorubicin 60 mg/m ² IV, cisplatin 40 mg/m ² IV	Every 3 weeks			
Pembrolizumaba,7	200 mg IV	Every 3 weeks			
	or 400 mg IV	Every 6 weeks			
Pembrolizumab/lenvatinib ⁹	Pembrolizumab 200 mg IV (or 400 mg IV every 6 weeks) + Lenvatinib 20-24 mg PO daily	Every 3 weeks			
Nivolumab ^{10,11}	240 mg IV or 480 mg IV	Every 2 weeks Every 4 weeks			

NCCN version 2 2024

Anaplastic or Poorly Differentiated Thyroid Carcinoma SYSTEMIC THERAPY

	Adjuvant/Radiosensitizing Chemotherapy Regimens ¹						
	Other Recommended Regimens						
	Paclitaxel/carboplatin	Paclitaxel 50 mg/m ² IV, carboplatin area under the curve (AUC) 2 IV	Weekly				
	Docetaxel/doxorubicin	Docetaxel 20 mg/m² IV, doxorubicin 20 mg/m² IV	Weekly				
	Paclitaxel	30–60 mg/m² IV	Weekly				
	Docetaxel	20 mg/m² IV	Weekly				
NC	Comprehensive Cancer Center TLLE UNIVED SUTV OF VANISAS						

Consideration of Kinase Inhibitors

Oral kinase inhibitors demonstrate clinically significant activity in randomized, placebo-controlled clinical trials in locally recurrent unresectable and metastatic MTC and in radioiodine-refractory differentiated thyroid cancer (DTC).

Kinase inhibitor therapy can be associated with improved progression-free survival, but is not curative.

Kinase inhibitor therapy is expected to cause side effects that may have a significant effect on quality of life.

The natural history of MTC and DTC is quite variable with rates of disease progression ranging from a few months to many years.

The pace of disease progression should be factored into treatment decisions. Patients with very indolent disease who are asymptomatic

NCCN version 2 2024

RAI Refractory- Lenvatinib

- Lenvatinib is an oral, multitargeted tyrosine kinase inhibitor of the VEGFRs 1, 2, and 3, FGFRs 1 through 4, PDGFR α, RET, and KIT signaling networks.
- Phase III trial- Inclusion, <u>at least one measurable lesion that had</u> progressed according to the Response Evaluation Criteria In Solid Tumors [RECIST], version 1.1, criteria within 12 months after iodine-131 therapy

February 12, 2015, N Engl J Med 2015; 372:621-630 DOI: 10.1056/NEJMoa1406470

Lenvatinib vs placebo

February 12, 2015, N Engl J Med 2015; 372:621-630 DOI: 10.1056/NEJMoa1406470

The University of Kansas

Cabozantinib for radioiodine-refractory differentiated thyroid cancer

The Lancet Oncology COSMIC - 311 DOI: https://doi.org/10.1016/S1470-2045(21)00332-6

THE UNIVERSITY OF KANSAS

Medullary Thyroid cancer

Neoplasm of the calcitonin-producing cells (para-follicular)

5-9% of all thyroid cancer

Both sporadic and familial types occur

- Sporadic more common (60-70%)
- Familial more common in 15-25 years of age

The University of Kansas Cancer Center

Medullary Thyroid cancer

Familial Medullary Ca

- mutation in RET proto-oncogene
- Dominant pattern of inheritance
- May be part of MEN
 - MEN 2A
 - Medullary thyroid cancer
 - Pheochromocytoma
 - Parathyroid hyperplasia
 - MEN 2B
 - Medullary thyroid cancer
 - Pheochromocytoma
 - Intestinal and mucosal ganglioneuromatosis
- May be a familiar form not associated with MEN

Thakker et al, J Clin Endocrinol Metab. 2012;97(9):2990. Epub 2012 Jun 20.

The University of Kansas

Treatment MTC

- Total thyroidectomy with LN dissection (risk of multifocal disease is high)
 - Bilateral central compartment node dissection
 - unilateral neck dissection at the very least.
- XRT
 - Not routinely given post-operatively
 - Disappointing efficacy for macroscopic disease

Wells et al. ATA Guidelines Thyroid. 2015;25(6):567.

Monitoring After Tx

Follow 2 tumor markers

- Calcitonin
- CEA

10-year survival rates

• 70-80% for familial and sporadic types combined

Wells et al. ATA Guidelines Thyroid. 2015;25(6):567.

Systemic therapy

Indicted for rapidly progressive or symptomatic disease.

NGS is key in guiding therapy.

Activating RET gene abnormalities occur in over 90% of hereditary and approximately 40%-60% of sporadic medullary thyroid carcinoma cases.

Selpercatinib and Pralsetinib are options for RET abnormality.

BEST HOSPITALS

The University of Kansas Cancer Center

RET Gene Abnormality

Phase 3 Trial of Selpercatinib in Advanced *RET*-Mutant Medullary Thyroid Cancer- N Engl J Med 2023;389:1851-1861 DOI: 10.1056/NEJMoa2309719 <u>VOL. 389 NO. 20</u>

B Progression-free Survival in Subgroups

Subgroup	Selpercatinib no. of events/toto median progress	Control al no. of patients ion-free surviva	s/ Hazard Rati	io (95% CI)
Overall	26/193/NR	33/98/16.8	⊢ ∎i	0.29 (0.17–0.49)
Age				
<65 yr	19/144/NR	23/72/17.5	⊢	0.33 (0.18-0.60)
≥65 yr	7/49/NR	10/26/12.2	⊢	0.23 (0.08-0.61)
ECOG performance-status score				
0 to 1	26/192/NR	31/94/16.8	⊢	0.30 (0.18-0.51)
2	0/0/—	2/3/8.2		_
Unknown	0/1/NR	0/1/NR		
Sex				
Female	10/78/NR	11/30/13.6	⊢I	0.26 (0.11-0.61)
Male	16/115/NR	22/68/17.5	⊢−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	0.32 (0.17-0.61)
Race				
Asian	6/43/NR	7/24/19.4		0.40 (0.13–1.19)
Non-Asian	18/121/NR	22/54/13.8	⊢ = i	0.24 (0.13-0.46)
Unknown	2/29/NR	4/20/25.1		0.34 (0.06–1.80)
RET mutation				
M918T	18/121/NR	18/61/17.5	⊢ =	0.40 (0.21–0.77)
Other	8/72/NR	15/37/13.8	⊢ − − − − − − − − − − − − − − − − − − −	0.18 (0.08-0.42)
Control therapy				
Cabozantinib	15/129/NR	24/71/12.2	├─── ■───┤	0.22 (0.11-0.41)
Vandetanib	11/64/NR	9/27/25.1		0.48 (0.20–1.16)
			0.03 1.	00 2.00
			Selpercatinib Better	Control Better

NCI Comprehensive Cancer Center

THE UNIVERSITY OF KANSAS

Phase 3 Trial of Selpercatinib in Advanced RET-Mutant Medullary

Thyroid Cancer- N Engl J Med 2023;389:1851-1861 DOI: 10.1056/NEJMoa2309719 VOL. 389 NO. 20

THE UNIVERSITY OF KANSAS Cancer Center

Cancer Center Designated by the National Cancer Institute

Vandetanib (Oral TKI)

J Clin Oncol. 2012 Jan 10;30(2):134-41. doi: 10.1200/JCO.2011.35.5040.

Targets VEGF, RET, EGFT

Randomized Phase III

- 300mg Vandetanib daily vs placebo
 - Better PFS (HR 0.46, p<0.001)
 - Also V better in objective response rate, Disease control rate
 ** No OS benefit reported yet
 - Boxed warning: Risk of QT prolongation

FDA approval (April, 6, 2011):

-Vandetanib for symptomatic or progressive medullary thyroid cancer in patients with unresectable, locally advanced, or metastatic disease.

Cabozantinib (Oral TKI)

J Clin Oncol. 2011 Jul;29(19):2660-6. Epub 2011 May 23

Targets

MET, VEGF receptor 2, RET

Randomized Phase III (n=330) with

- 140mg PO daily vs placebo
 - Better PFS (11.2 m vs 4 m)
 - Better response rate (28% vs 0%)
 - ** No OS benefit reported yet **

FDA approval (November, 29, 2012): -Cabozantinib for metastatic medullary thyroid cancer

The University of Kansas Cancer Center

Thank you

