Radiation Therapy and Immunotherapy: New Frontiers

May 12th, 2017
Anshu K. Jain, MD
Radiation Oncologist, Ashland-Bellefonte and Logan Regional Cancer Centers
Assistant Professor of Therapeutic Radiology, Yale School of Medicine
Objectives

• Review concepts of radiation therapy treatment and techniques
• Overview of pre-clinical evidence of radiotherapy immunogenic effects
• Describe rationale for combination therapy and review evidence
• Review evidence of combination therapy
• Briefly review on-going trials investigating combination therapies
Stereotactic Body Radiation Therapy (SBRT)

• A paradigm shift in how radiation therapy is delivered over past decade
• Stereotactically localized, high dose RT
• Typical doses range from 30-60 Gy in 3-8 fractions
• Demands greater technical considerations
 • Tumor motion, immobilization, image guidance

Higher biologically effective dose = effective ablation of tumor
Systemic/local immune enhancement
- Vaccine
- Checkpoint inhibitors
 - Anti-CTLA-4
 - Anti-PD-1
 - Anti-TIM3
- Co-stimulatory agonists
 - Anti-OX40
 - Anti-4-1BB
 - Anti-CD27
- Anti-GITR
- Exogenous cytokines
 - IL-2
 - IL-7
 - IL-12
 - GM-CSF

Immune induction
- Cell death
- Necrosis

Primary tumour
- Radiation

Cell death
- Apoptotic bodies
- Debris
- Danger signals
- DAMPs
- TAAs
- Cytokines

Immune induction
- Dendritic cell cross-presentation of TAAs

Lymph node
- Vascular normalization

Distant tumour
- TAA-specific T cells

Vascular normalization
- Immune infiltration
- Immunogenic modulation
- Phenotype changes
 - T MHC
 - T TAA
 - T T-cell killing

Phenotype changes
- Polyvalent antigen-specific T cells
- Immuno-therapy
RT Alone: Preclinical Evidence

• SBRT elicits CD8+ T-cell immune response resulting in primary and metastatic tumor shrinkage or eradication in mouse models (Lee et al. Blood 2009)
 • Conventional fractionation not able to elicit similar response

• Other studies have demonstrated similar findings on facilitation of antigen presentation, priming of peripheral T-cells, and infiltration of tumor antigen specific T-cells.
RT Alone: Preclinical Evidence

- Data suggests a complex fractionation and dose-dependent relationship
 - **Threshold dose** below which immune stimulation suboptimal
 - **Ceiling dose** above which immunosuppression may prevail
 - Dose may impact the longevity of immune response

Bernstein et al *Cancer Bioherm. Radipharm.* 2014
Combination Therapy: Preclinical Evidence

- **Immunostimulatory Pathway**
 - anti-CD137; anti-CD40

- **Immunosuppressive Pathway**
 - RT and CTLA-4 blockade; RT and PD1 blockade
 - Mediated by CD8+ T-cell antitumor activity
 - Hypofractionated regimens may be superior to single fx regimen
 - RT enriched immune effector cells

- Combination of immunomodulators may be superior
 - Various mechanisms (exhaustion, etc.)
Clinical Evidence

- Retrospective
- Primarily in melanoma patients
 - Primarily ipi
 - Improved survival in patients receiving ipi and SRS for brain metastases vs. WBRT
- Case reports in NSCLC
 - Mainly ipi related
 - Intent of therapy in case report to generate abscopal effect
- Limited conclusions to be drawn except proof-of-principle
 - Differences in treatment sequencing, RT doses, location of response

Ongoing Trials

- Some investigating in melanoma only
- Others enrolling varying solid tumor types
- Newer studies investigating anti-PD1 agents or combination therapy

Patients with NSCLC, no prior PD-1 therapy

MK-3475 200 mg every 3 weeks
re-staging every 6 weeks
until progression

Progression of Disease

SBRT to a single lesion
Arm A: dose escalation for lung targets
Arm B: dose escalation for non-lung targets

MK-3475 200 mg every 3 weeks
re-staging every 6 weeks
until progression

Progression of Disease
OR unacceptable treatment-related toxicity
OR 1 year

Off study, post-treatment assessment

Patients with Melanoma,
Previously treated, with irPD
Phase 2a

Arm A: Patients with NSCLC, no prior PD-1 therapy
MK-3475 200 mg every 3 weeks re-staging every 6 weeks until progression
Progression of Disease
SBRT to a single lesion (at MTD)
MK-3475 200 mg every 3 weeks re-staging every 6 weeks until progression
Progression of Disease OR unacceptable treatment-related toxicity OR 1 year
Off study, post-treatment assessment

Arm B: Patients with Melanoma, Previously treated, with irPD
A RANDOMIZED DOUBLE-BLIND PHASE 3 STUDY OF AVELUMAB IN COMBINATION WITH STANDARD OF CARE CHEMORADIOThERAPY (CISPLATIN PLUS DEFINITIVE RADIATION THERAPY) VERSUS STANDARD OF CARE CHEMORADIOThERAPY IN THE FRONT-LINE TREATMENT OF PATIENTS WITH LOCALLy ADVANCED SQUAMOUS CELL CARCINOMA OF THE HEAD AND NECK

Randomized Double-Blind 2-Arm Study

<table>
<thead>
<tr>
<th>Lead-in Phase</th>
<th>CRT Phase</th>
<th>Maintenance Phased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avelumab 10 mg/kg IVb + SOC Chemoradiationc</td>
<td>Avelumab 10 mg/kg IVb</td>
<td>Avelumab 10 mg/kg IV Q2W</td>
</tr>
<tr>
<td>Placebo IVb + SOC Chemoradiationc</td>
<td>Placebo IVb</td>
<td>Placebo IV Q2W</td>
</tr>
</tbody>
</table>

N=640 LA SCCHN patientsd

1:1 randomizationb

Treatment until:
- Confirmed PDe
- Patient withdrawal
- Lost to follow-up
- Unacceptable toxicity
- Study terminated by Sponsor
Future Directions

• **Potential Role in Early Stage Lung CA**
 • SBRT/SABR already viable alternative to curative surgical resection
 • Neither demonstrates significant impact on nodal (~5%) or distant (~10%) relapse
 • Potential advantage of combined therapy with curative intent SBRT and alternate role as in-situ tumor vaccine with immunotherapy

• **Role in Locally Advanced Disease?**
Summary

• **Productive interaction between stereotactic radiation and immune system, can be exploited**

• **Dose per treatment / fraction of radiotherapy matters**
 - Multiple fraction therapy may have benefits over single fraction therapy

• **Resistance to immunoradiotherapy combinations likely through non-redundant immune pathways**
 - RT/anti-CTLA4 -> antitumor CD8+ T-cell exhaustion via PD1 pathway
Summary

• **Optimal sequencing of therapy unknown**
 • Seemingly limitless combinations of therapy and sequencing

• **Endpoints matter**
 • PDL1 expression
 • CD8+ T-cell:T reg; CD8/CD4
 • Exome and proteosome analysis

• **Role for big data to accelerate hypotheses on optimal sequencing**
Thank You! Questions?