The Microbiome in Cancer Immunotherapy

Sandip Patel, MD
Assistant Professor
UCSD Center for Microbiome Innovation
Co-Leader, Experimental Therapeutics (Phase 1)
Deputy Director, San Diego Center for Precision Immunotherapy
Assistant Director, Clinical Trials Office
Experimental Therapeutics, Thoracic Oncology, Cancer Immunotherapy Programs, Center for Personalized Cancer Therapy

November 29, 2017
Common Types of Immunotherapy

- **Vaccines**
 - Peptide/Protein/Tumor cell lysates
 - Viral
 - Dendritic Cell
 - Oncolytics
- **Small molecule agonists and inhibitors**
 - IDO
 - TGF-beta
- **Cytokines**
 - IL-2
- **Immune checkpoint blockade**
 - CTLA-4
 - PD-1, PD-L1
- **Cellular therapy**
 - CARs, TCRs

Immune System Function and Immune Response

Basic Concepts in Tumor Immunology: Immunoediting

Immunologic Synapses Within Tumor Microenvironment

Clinical Biomarkers
CheckMate 057: OS in NSCLC-nonsquamous

Nivolumab (n = 292)
Docetaxel (n = 290)
mOS, mo 12.2 9.4
HR = 0.73 (96% CI: 0.59, 0.89); P = .0015

1-yr OS rate = 51%
1-yr OS rate = 39%

Nivolumab
Docetaxel

At Risk, n
Nivolumab 292 232 194 169 146 123 62 32 9 0
Docetaxel 290 244 194 150 111 88 34 10 5 0

PD-L1 IHC

H&E
PD-L1(SP142)
PD-L1(SP263)

Tumor cell

Immune cell

Figure 1: Staining with PD-L1 monoclonal antibodies in tumor and immune cells. Histology of urothelial carcinoma (upper panels) and metastatic lung adenocarcinoma (lower panels). Tissues were stained with hematoxylin-eosin and PD-L1 monoclonal antibodies (SP142 and SP263, respectively).

Nakasaki, Jacobs, Fadare, Patel, Hansel (pending)
Biomarker Enrichment - OS in NSCLC with Pembrolizumab

- PD-L1 expression on tumor membrane
- 50% cutoff point

Garon et al. NEJM 2015

PFS by TMB Subgroup & PD-L1 Expression

CheckMate-026 TMB Analysis: Nivolumab in First-line NSCLC

The Intersection of the Gut and the Immune System

Immune Checkpoint Inhibitor Colitis

- Ipilimumab-induced ileocolitis with deep ulcerations in the colon

Microbiota in Inflammatory Bowel Disease

Major differences in microbiome profile between HC (healthy control) and:
- Ulcerative colitis (UC)
- Collagenous colitis (CC)
- Colonic Crohn’s Dz (CCD)
- Ileal Crohn’s Dz-not resected (ICD-nr)
- Ileal Crohn’s Dz-resected (ICD-r)

Halfvarson, Knight, Jansson. Nat Micro 2017

Microbiome Modulates Response to Immunotherapy

- Where a mouse was ordered seemed to determine response to anti-PD-L1 (JAX vs TAC).
- This difference was driven by gut microbiota.
- The commensal microbial composition can influence spontaneous antitumor immunity, as well as a response to immunotherapy with αPD-L1 mAb.
 - Combination treatment with both JAX fecal transfer and αPD-L1 mAb improved tumor control (Fig. D)
 - αPD-L1 alone was significantly more efficacious in JAX mice compared with TAC mice (Fig. G).

Which bacterial species?

- Bifidobacterium (BIF) seemed to be the sensitizing bacterial strain
- Transfer of BIF into deficient mice led to improved anti-tumor responses with anti-PD-L1

Melanoma patients with more gut microbiome diversity response better to anti-PD-1

V. Gopalakrishnan et al. Science 2017;science.aan4236
Different Bacteria Portend Response or Resistance to Anti-PD-1 in Melanoma

V. Gopalakrishnan et al. Science 2017;science.aan4236

Gut bacteria influence response to anti-PD-1

Bertrand Routy et al. Science 2017;science.aan3706
Fusobacterium nucleatum RNA present in colon primary tumors and metastasis

Fusobacterium persist in patient-derived xenografts
Treatment of Fusobacterium colonized PDX with metronidazole reduces tumor growth in mice

Susan Bullman et al. Science 2017;science.aal5240

What about other immune checkpoints? Anti-CTLA-4

In mice, anti-CTLA-4 seems to work best with Bacteroides fragilis.

T cell (CD4) responses to B. fragilis specifically were associated with reductions in tumor size.

Vétizou et al. Science 2015;350:1079-1084
What about bone marrow transplant?

- After auto-SCT there was an increase of Proteobacteria and a reduction of Bacteroidetes
- After allo-SCT there was an increase of Bacteroidetes and a reduction of Firmicutes
- Patients who developed graft versus host disease (GvHD) harbored more Firmicutes and Proteobacteria and less Bacteroidetes

Chiusolo et al. Blood 2015;126:1953
How Different Bacterial–induced Mechanisms can Lead to Cancer

https://doi.org/10.1371/journal.ppat.1006480
http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006480

Bacteria can stimulate inflammation, and vice versa

Schwabe Science 2012
Specific bacterial mechanisms of oncogenesis

<table>
<thead>
<tr>
<th>Intestinal bacteria</th>
<th>Bacterial mechanism</th>
<th>Hallmark affected</th>
<th>Mouse models</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>colicin</td>
<td>genome instability and mutations</td>
<td>in vivo collagen assays</td>
<td>[10]</td>
</tr>
<tr>
<td>Toll-like 2</td>
<td>unknown mechanism</td>
<td>tumor-promoting inflammation</td>
<td>AOM/DSS xenograft model</td>
<td>[10]</td>
</tr>
<tr>
<td>Bacteroides thetaiotaomicron and Bacteroides fragilis</td>
<td>unknown mechanism</td>
<td>induces avoiding immune destruction</td>
<td>MCA266 sarcoma, Ret melanoma, and MC38 CRC xenograft</td>
<td>[16]</td>
</tr>
</tbody>
</table>

Microbiome and Metabolome are Connected

[Link to the study by Winter SE, Lopez CA, & Baumler AJ (2013) Microbiome and Metabolome are Connected, EMBO reports, Vol 14, p. 319-327 (2013)]

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006480
Metabolic receptors (aryl hydrocarbon) promote Tregs

Antibiotics compromise the efficacy of PD-1 blockade in cancer patients?

• Antibiotic effect or patient population effect?
• Judicious use of antibiotics is important regardless

Bertrand Routy et al. Science 2017;science.aan3706
Microbiome protection from immune-related colitis

- Patients with melanoma receiving ipilimumab had less immune-related colitis if they had higher bacteroides spp
- Increase in Thiamine and Riboflavin protective from colitis
 - Levels decreased in Crohn’s

Dubin et al. Nat Comm 2017

Translational Research Directions

- Stool microbiota are important in oncogenesis
 - Whether direct modulation of bacteria (probiotics/antibiotics) OR
 - Understanding and modifying their downstream immune effects is more important is unknown

- At a population level, most patients with these microbiota signatures do not develop cancer
 - Understanding host factors key

- Bacteria modify tumor-promoting inflammation, and the tumor microenvironment modifies bacteria
 - What is the inciting event?
 - What is the most important to modify?

- Many bacterial species in these studies are on both responder and nonresponder lists – need larger, prospectively defined datasets
 - Increased clarity with shotgun sequencing in prospective cohorts
Clinical Questions

- Should we be giving probiotics to cancer patients receiving immunotherapy?
 - Not yet
 - Bifidobacterium?
 - Non-toxic bacteroides?

- Should we be giving antibiotics to cancer patients receiving immunotherapy?
 - Judiciously
 - For antibiotics resistance and for microbiome interaction with immunotherapy

- Can microbiome influence cancer development
 - Personalized probiotics as prevention
 - May be a key public health intervention going forward