Predicting Symptomatic Radiation Pneumonitis using Exhaled Nitric Oxide and 18F-Fluorodeoxyglucose Positron Emission Tomography

Matthew McCurdy, M.D., Ph.D. 1,2
Resident, PGY5
Baylor College of Medicine

Mohamad Wazni3, Eric Hyun2, Caimiao Wei4, Edward Castillo2, Richard Castillo2, Thomas M. Guerrero2,

1Baylor College of Medicine Affiliated Hospitals, Houston, TX, 2The University of Texas MD Anderson Cancer Center, Houston, TX, 3The University of Texas Health Science Center Houston, Houston, TX, 4Department of Statistics, The University of Texas MD Anderson Cancer Center, Houston, TX
Acknowledgements

- Support provided by NIH/NCI Grants R21CA141833 and R25T-CA90301.
- Thomas Guerrero, M.D., Ph.D.
- The Baylor & MD Anderson Radiation Oncology residency training programs.
- Steve Carpenter, M.D.
- Dr. Tom Buchholz who initiated this collaboration.
Radiation Pneumonitis

• First reported 1898 (J Bergonie Arch Electr Med (1898) 6:334)

• Incidence 5-50%, 1 - 6 months post-XRT

• V20 correlates with RP. Four fatal cases reported (V20 range 22 to 57). V20 range of severe RP overlaps asymptomatic.

Fatal Radiation Pneumonitis

- Dosimetric parameters set population guidelines but not predictive for individuals.
- Fatal RP rates as high as 46% reported (Allen et al. IJROBP 2006).

Nitric Oxide in the Airway

Nitric Oxide and Thoracic Radiation

• Koizumi JJCO (2001)
 29 lung cancer patients who received thoracic XRT, 5 had elevated NO after XRT 3x > pre-XRT. 3 of the 5 patients had radiation pneumonitis.

• Guerrero IJROBP (2011)
 28 esophagus cancer patients who received 50.4 Gy thoracic XRT with concurrent chemo-therapy, elevated NO in every symptomatic patient.

• McCurdy Radiother Oncol (2011)
 50 esophagus and lung cancer patients who received thoracic XRT. A threshold of 1.4 separated symptomatic from asymptomatic patients.
Exhaled Nitric Oxide

• Non-invasive, inexpensive, point-of-care device.
• FDA approved device available.
• Approved to monitor asthma.
• NIOX Mino optimized for airway NO evaluation in asthmatic patients.

NIOX Mino (Aerocrine)
Exhaled NO Measurement
Study Design

• Respiratory survey and eNO
 – Baseline
 – End of radiotherapy
 – 4-8 week follow-up visit (limited f/u)

• 78 esophagus cancer patients

• Part of NIH funded phase II study to evaluate PMRR
NIH Common Toxicity Criteria for Adverse Events version 4 (CTCAE v4.0) summarized below in Table 1 (CTEP, 2009).

Table 3. RP¹ grading using NIH Common Toxicity Criteria for Adverse Events version 4.

<table>
<thead>
<tr>
<th>Grade</th>
<th>None</th>
<th>Asymptomatic; clinical or diagnostic observations only; intervention not indicated</th>
<th>Symptomatic; medical intervention indicated; limiting instrumental ADL</th>
<th>Severe symptoms; limiting self care ADL; oxygen indicated</th>
<th>Life-threatening respiratory compromise; urgent intervention indicated (e.g., tracheotomy or intubation)</th>
<th>Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Asymptomatic; clinical or diagnostic observations only; intervention not indicated</td>
<td>Symptomatic; medical intervention indicated; limiting instrumental ADL</td>
<td>Severe symptoms; limiting self care ADL; oxygen indicated</td>
<td>Life-threatening respiratory compromise; urgent intervention indicated (e.g., tracheotomy or intubation)</td>
<td>Death</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ADL = activities of daily living.

¹Definition (Pneumonitis): A disorder characterized by inflammation focally or diffusely affecting the lung parenchyma.
Pneumonitis Scores

<table>
<thead>
<tr>
<th>CTCAEv4 Toxicity Grade</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>35 (45)</td>
</tr>
<tr>
<td>1</td>
<td>33 (45)</td>
</tr>
<tr>
<td>2</td>
<td>9 (12)</td>
</tr>
<tr>
<td>3</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>

Abbreviation: CTCAEv4 = Common Toxicity Criteria for Adverse Events version 4 pneumonitis toxicity grade.
Dosimetric Parameters & Symptoms

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Asymptomatic (n = 68)</th>
<th>Symptomatic (n = 10)</th>
<th>p^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLD</td>
<td>6.6 (1.0 - 14.7)</td>
<td>6.6 (2.8 - 14.3)</td>
<td>0.83</td>
</tr>
<tr>
<td>V_5</td>
<td>32.4 (3.9 - 63.8)</td>
<td>38.6 (13.1 - 64.9)</td>
<td>0.77</td>
</tr>
<tr>
<td>V_{10}</td>
<td>22.3 (3.5 - 44.1)</td>
<td>22.1 (8.5 – 47.7)</td>
<td>0.72</td>
</tr>
<tr>
<td>V_{20}</td>
<td>12.9 (2.2 - 26.3)</td>
<td>10.2 (4.6 - 32.8)</td>
<td>0.41</td>
</tr>
<tr>
<td>V_{30}</td>
<td>6.3 (1.0 - 18.8)</td>
<td>4.1 (1.3 – 20.2)</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Abbreviations: MLD = mean lung dose; V_5 = percentage of lung receiving ≥ 5 Gy; V_{10} = percentage of lung receiving ≥ 10 Gy; V_{20} = percentage of lung receiving ≥ 20 Gy; V_{30} = percentage of lung receiving ≥ 30 Gy.

Data presented as median with range in parentheses. P-values calculated using the Mann-Whitney test with $p \leq 0.05$ or less were considered statistically significant.
Distribution of Exhaled Nitric Oxide Ratio

Number of Cases

Ratio Exhaled Nitric Oxide (End RT / Before RT)

Number of Cases

Ratio Exhaled Nitric Oxide (1-2 mos After RT / Before RT)
Grade 3 Pneumonitis

Number of Cases

Ratio Exhaled Nitric Oxide
(End RT / Before RT)
Nitric Oxide Ratio and Dosimetric Parameters

![Graphs showing the relationship between Ratio Exhaled Nitric Oxide and Mean Lung Dose (Gy) and Percentage Lung >20 Gy (V_{20}). The graphs demonstrate the correlation between these dosimetric parameters and the ratio of exhaled nitric oxide, with different markers indicating different groups (e.g., none, symptomatic).]
Radiation pneumonitis appears “hot” on PET imaging.

The PET-dose response is linear.

This slope is independent of treated volume.

The slope (PMRR) is a surrogate biomarker of RP, not predictive.

Guerrero 2007 Int J Radiat Oncol Biol Phys
Hart 2008 Int J Radiat Oncol Biol Phys
McCurdy 2010 Int J Radiat Oncol Biol Phys
Pre-treatment PET

SUV of highest 5% of voxels

none

symptomatic
Radiation Dose Response on Post-Treatment PET

![Bar chart showing radiation dose response on post-treatment PET. The x-axis represents PMRR (probably malignant radiation-induced) and the y-axis shows the number of cases. The chart compares cases with and without symptoms, indicated by different colors.](image)
Future Work

- Weekly nitric oxide measurement
- Correlation of airway versus alveolar NO with RP
- Longer follow-up, 6 months post-XRT

Thoracic XRT Patients (MLD > 12 Gy)

XRT

Weekly eNO

↑ eNO

Concurrent trial

Inhaled Beclomethasone

Standard of Care

↔ or ↓ eNO

Observe

6 Monthly post-XRT respiratory symptom assessments

- Detection of chemotherapy-induced lung damage
Conclusions

- Symptomatic patients had higher NOR of $2.1 \pm SD 1.6$ (range 0.4 - 6.7) vs. 0.73 ± 0.3 (0.28 - 2.3) ($p<0.0001$).
- Post-treatment FDG-PET dose response ($p=0.28$), mean lung dose (MLD) ($p=0.81$) and volume of lung receiving at least 20 Gy (V20) ($p=0.41$) were not significant.
- Using an NOR threshold of 1.1 gave an associated sensitivity of 60%, specificity of 89%, positive predictive value of 46% and negative predictive value of 93% using a 13% prevalence found in this study.